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Abstract
The reconstruction of high-quality surface meshes from measured data is a vital stage in digital shape processing.
We present a new approach to this problem that deforms a template surface to fit a given point cloud. Our method
takes a template mesh and a point cloud as input, the latter typically shows missing parts and measurement noise.
The deformation process is initially guided by user specified correspondences between template and data, then
during iterative fitting new correspondences are established. This approach is based on a Laplacian setting for
the template without need of any additional meshing of the data or cross-parameterization. The reconstructed
surface fits to the point cloud while it inherits shape properties and topology of the template. We demonstrate the
effectiveness of the approach for several point data sets from different sources.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms

1. Introduction

In recent years we have observed increasing interest in spa-
tial scanning devices and the development of new and im-
proved technologies that enable real-time capturing of real-
world objects. This proliferation is mostly due to the fact
that geometry acquisition and reconstruction are essential
to many fields of application: in the life-cycle of industrial
product design, prototypes are digitized to serve as feedback
to the designer; scanners are used along manufacture lines
for quality and process control. In medicine, the shape of in-
ternal organs is captured to detect malfunctions and diseases
using minimal invasive methods. In security and authenti-
cation, spatial scanning introduces an additional dimension
upon the traditional image based methods. However, the
most evident use of shape digitization is in the entertainment
industry, where digital models in games produce realistic
scenes and motion, while the movies show realistic special
effects. Independent of scanning technology and application
domain, most geometry acquisition results in unstructured
point cloud data, where each point provides a sample of the
acquired object, typically afflicted with measurement error.
Precision of measurement depends on many factors, such
as acquisition device and technology, environmental con-
ditions, complexity of the scanned object and many more.
Fig. 1 (b), 2 (b), 7 (b) show examples of point clouds ac-
quired with different methods. It is clearly visible that some

surface parts are missing as they could not be acquired be-
cause of technical reasons.

The process of transferring an unstructured point cloud
model into a consistent discrete surface model such as a
polygonal mesh is commonly referred to as surface recon-
struction. Here, the main task consists of the generation
of a manifold mesh that approximates the input data, i.e.,
that captures its global shape and topology together with its
fine geometry details. However, typical data from acquisi-
tion shows missing surface regions even if multiple scans
are spatially aligned and combined into a single model. Any
reconstruction method must fail for this data in the sense that
missing parts can be filled or extrapolated reasonably only if
additional knowledge on the original shape is provided. This
applies locally as well as globally: without knowledge, holes
are patched smoothly (if at all), and global shape properties
such as the genus cannot be detected from incomplete data.

There are various approaches how to apply additional
knowledge to surface reconstruction. Our method uses a
template shape for reconstruction of point clouds without
any preprocessing such as noise and outliers removal. In par-
ticular no high-level tools such as parameterization or maps
between surfaces are required. The only restriction is that
in order to get reasonable results, the template should share
the same global structure or “nature” with the data, e.g., a
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Figure 1: Overview of the method for the camel: (a) Template with 30 oriented markers; (b) point cloud with oriented markers;
(c) initial deformation (no prior adjustment applied on input data, which are extremely out of scale); (d) after scaling. (e)-(g)
show iterations 1,2, and 4, respectively; (h) shows the final result from the backside with points overlaid. Front head, feet, and
tail were masked out due to missing data.

human model serves as template for reconstructing another
human although shapes are in different poses.

Our method uses a small number of correspondence
points marked interactively by the user to deform the tem-
plate shape into the pose of the acquired point cloud model.
Successive deformations improve approximation of the data.
These deformations are guided by additional local corre-
spondences which are established based on certain geomet-
ric criteria. Throughout the whole process, information is
propagated from known to unknown parts of the shape.
Our results show that with only minimal user interaction,
the approach reconstructs a consistent and smooth surface
that approximates the input data. If suitable templates exist,
template-based methods like ours carry an advantage com-
pared to those that work only on the plain data. We remark
that in practice, templates exist for most common applica-
tions, many of them processing a certain class of shapes,
e.g., humans. This leads to another advantage of our ap-
proach: If the same template is used for different data sets
we trivially obtain a map between the deformed templates.
Indeed, such maps are required by many applications, e.g.,
for texturing, and they are especially valuable for processing
time-dependent data.

2. Related work

Surface reconstruction from unstructured point cloud data
has been within interest of computer graphics since its early
days. The further development of acquisition techniques
with increasing amount of data and the quest for accuracy,
correctness and robustness have rendered it a topic of ac-
tive research. In the following, we cannot go into details of
reconstruction methods in general, and for an overview re-
fer to the recent work of Kazhdan [Kaz05] and the refer-
ences therein. Following Kazhdan, reconstruction methods
can be categorized as: Computational Geometry based meth-
ods, many of them with certain guarantees, implicit func-
tion based approaches which fit and extract iso-surfaces, and
such methods which fit an explicit surface to the data. Our
approach is within the latter category. Early work in this di-
rection are active meshes [TV91], where a grid structure is
deformed to fit sampled intensity and range data based on a
mass-spring model. In [CM95], a dynamic physical model
is applied to “inflate” a balloon-like mesh to fit scanned data
from inside; the process is supported by local adaptation.
An inverse shrink wrapping method [KVLS99] fits meshes
to meshes. Fitting methods are particularly used in reverse
engineering together with surface classification, segmenta-
tion, and feature detection; often local regions are processed
separately as patches (see, e.g., [VMC97]). However, for
most methods it is difficult or impossible to generate rea-
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sonable results if parts of the input data are missing. On the
other hand this situation is typical for most acquisition tech-
niques. Nevertheless, consistency of models and efficiency
of the reconstruction process are vital for many applications.
Lévy [Lév03] fills missing parts smoothly working in the
parametric domain. Sharf et al. [SAC04] generate local ge-
ometry based on similarity measures to existing parts. This
leads to template-based approaches, where missing or con-
taminated input data is compensated by additional knowl-
edge in form of a template shape. Template-based methods
were frequently used in the previous years especially for re-
constructing animated models. Kähler et al. [KHYS02] use
a detailed model of face anatomy to generate facial ani-
mation; this is an example for a highly specialized model.
In [ACP02, ACP03, ASK∗05], a combination of templates
together with learning techniques is used to reconstruct mo-
tion of a human model with a known skeleton. Most recently,
Kraevoy and Sheffer [KS05] establish maps between trian-
gulated data and template in order to transfer missing geom-
etry. This work, together with the work by [ACP02,ACP03],
is built on cross-parameterization between the template and
the input model. In contrast to the above, our approach
is applied to the original scanned point cloud model. It is
based on deformations of the template, and it requires no
additional tools such as parameterization. Recently, Pauly et
al. [PMG∗05] apply global deformation, similar to [ACP03],
to a collection of templates. They determine the best fitting
template parts by segmentation and rebuild the target model
from these. Our method relies only on a single template, and
uses local fitting in addition to global deformation to match
the template to the target point cloud. Deformation for mesh
editing has been exhaustively researched, and we refer to re-
cent surveys by Alexa [ACS05] and Sorkine [Sor05], who
focuses on the Laplacian settings used in this work. Fur-
thermore, we remark that for non-rigid registration, warp-
ing techniques based on thin-plate splines have been used
[BR04,CR03]. In contrast to our method, which deforms the
surface, these approaches apply smooth deformations of the
embedding space.

3. Overview of the algorithm

Our method processes general point data with normals that
are either given from data acquisition or can be estimated
(see, e.g., [JDZ04]). Such data is typically afflicted with
noise and outliers, is incomplete with missing parts and
hence not directly appropriate for meshing. Our goal is to
deform a template mesh such that the input data is approxi-
mated in global pose and local surface features, i.e., missing
parts are filled from the template.

In order to achieve this, the user specifies pairs of corre-
sponding points on point cloud and template (cf. Fig. 1 (a),
(b), and Sec. 5.1). In addition to positions, correspondence
in local frames is established for each pair. This first step is
accomplished quickly with an intuitive user interface. Corre-

sponding pairs are typically placed near shape features. The
correspondance points and local frames do not have to match
perfectly on the template and point cloud. In practice a rough
approximation of similar positions and directions (i.e. have
the local frame point towards the foot on a constraint point
on a knee) is sufficient.

The approach is based on a Laplacian setting w.r.t. the
template mesh (Sec. 4). We compute Laplacian coordinates
of the template and estimate local rotations from the given
corresponding local frames. In order to obtain an initial de-
formation, local rotations are interpolated over the template
and Laplacian coordinates are rotated accordingly. Then
the mesh is reconstructed subject to positional constraints
from the correspondences. The result mimics the global pose
of the data, however, it suffers from improper scaling (cf.
Fig. 1 (c) and Sec. 5.2).

In order to compensate for this, we recover a global scale
from averaging ratios of discrete geodesic distances between
the user specified points on the original and on the deformed
template. The reconstruction from the scaled Laplacian co-
ordinates now captures the global pose of the input data
(Fig. 1 (d)). However, taking only into account the input cor-
respondence so far, the deformed mesh still resembles the
template and does not yet provide sufficient local approxi-
mation of the data points.

We address the latter issue with an iterative process of
matching and reconstruction. For all vertices of the template,
we search for matches on the data. This search is guided
by a maximum radius and a maximum angular deviation
of normals from template and data. False matches in erro-
neous or insufficiently sampled data regions are avoided by
masking out such regions. For every match a weighted po-
sitional constraint is included in the linear system, and the
deformed template mesh is reconstructed. This process is
iterated based on the new deformation until the deformed
template approximates the data sufficiently (cf. Fig. 1 (e)–
(g) and Sec. 5.3).

In a final step, we estimate local scales for all local
matches in the previous set based on the displacements from
the initially deformed template and to last deformation. The
lengths of displacements are interpolated over the template
to generate new positional constraints for the final recon-
struction. The rationale of this last step consists of propaga-
tion of scaling information into regions of the template with
no matches or correspondences due to missing data. A final
result is shown in Fig. 1 (h).

4. Laplacian setting and notation

Our method is based on Laplacian surface editing [Ale03,
LSC∗04, SLC∗04]. Here, we summarize on the essential
notation and differences to our approach. Let T = (p,T )
be the template mesh defined by vertex positions p = (pi)

c© The Eurographics Association 2006.



C. Stoll, Z. Karni, C. Rössl, H. Yamauchi, H.-P. Seidel / Template Deformation for Point Cloud Fitting

(a) (b) (c) (d) (e)

Figure 2: Fitting a female model. (a) Template with 46 markers placed; (b) point cloud (with parts missing); (c) ignored regions
stay rigid; (d) initial fit after scaling; (e) final result (see also closeup in Fig. 5 (a)).

(i = 1, . . . ,n) and a triangulation T of the vertices. The tri-
angle mesh T represents a piecewise linear surface, and dis-
cretizations of the Laplacian w.r.t. T are well known [PP93,
MDSB02], in the following we apply the discrete Laplace
operator L based on the cotangent-weights.

Following [LSC∗04], we compute Laplacian coordinates
d of the template as d = Lp. (Here, and in the following, all
coordinates are treated component-wise in x,y,z.) The recon-
struction x of the surface from d subject to a certain number
of constraints x j ≈ q j , j ∈ {1, . . . ,n}, leads to minimizing

argmin
x

{

‖Lx−d‖2 +‖Cx−q‖2
}

,

i.e., to a linear least-squares problem and finally to solving

(L>L+C>C)x = L>d+C>q . (1)

Here, we assume C is a diagonal matrix with non-zero en-
tries C j, j = w j (where w j is the weight of the additional
entry) only for constrained vertices j, and consequently only
positions q j are non-zero.

It is well-known that this setting as is cannot han-
dle rotations adequately, and there are different strategies
to cope with the rotation-invariance of Laplacian coordi-
nates [SLC∗04,LSLC05]. In the following, we take a differ-
ent approach and use harmonic interpolation [ZRKS05] over
the template shape to propagate appropriate rotations, which
are then applied to the coordinates d. For the harmonic in-
terpolation of rotations r a Laplace system is solved, namely
Lr = 0 subject to Dirichlet boundary conditions (specifying
rotations at the correspondence points).

We use this basic setting throughout all subsequent steps,
and we can take advantage from precomputations such as
matrix factorizations. We are aware that other approaches
could be used in a similar way to achieve our goals like for

instance [YZX∗04, ZRKS05], see [Sor05] for a recent sur-
vey. We chose this setting because it shows excellent results,
it is simple in concept and implementation, and it is efficient.

5. Deformation-guided matching

5.1. User interaction

Given the point data, the user chooses an appropriate tem-
plate mesh that will be deformed to approximate the input.
Our method is robust, and there are no restrictions on the
template in general, however, no meaningful results can be
expected from severe mismatches, i.e., in genus.

In the next step the user identifies and marks pairs of cor-
responding points on template and point data. Such corre-
spondences are required on or near shape features, e.g., at
feet and knees for human or animal models. In addition, the
user defines a local frame for every marked point. With nor-
mals for point data and template given, this means that cor-
responding tangential directions on both surfaces are cho-
sen. Interactive definition of correspondence is typically a
matter of minutes for reasonably complex input. The qual-
ity of the final result depends on the number of correspon-
dences and their locations. Fig. 1 (a) shows oriented mark-
ers on the camel template. Their corresponding positions are
first identified by clicking on the point cloud, and within
the same user action tangent vectors are rotated (using the
mouse wheel) until rotation matches. Note that orientation is
only required to be consistent between template and data, In
particular, no explicit alignment to surface features or prin-
cipal curvatures is necessary.

Correspondences will be used to globally bring the tem-
plate into the “pose” of the point data. In the subsequent
step, local correspondences between shapes will be searched
based on heuristics. Here, it is important to remove the influ-
ence of data regions which are insufficiently sampled and
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Figure 3: Closeup of the elbow from Fig. 2 with data points
overlaid. Iterative improvement, from left to right: Initial fit
and iterations 1,2,4,8.

cannot provide reasonable information. For this reason, the
user selects a global region of interest either on the point
data or on the template (as done in our examples). Points
outside this region are ignored for any subsequent matching
(Sec. 5.3), i.e., for these masked-out regions the template
is deformed rigidly. The choice of this region and hence as-
sessment of the data is straightforward even for a non-trained
person. An example for this is the hand in Fig. 2, which is
open in the template and closed in the point-cloud. The den-
sity of the point-cloud is not high enough to correctly fit sin-
gle fingers like those present in the template.

5.2. Initial deformation and global scaling

From the selected correspondences, we compute the initial
deformation of the template. Let pairs (p,q) represent po-
sitions of corresponding points on the template and on the
point cloud, respectively. Then we treat q as constraints in
the Laplacian setting (Sec. 4) using uniform weights in C.
Prior to reconstruction, we estimate local rotations for every
pair of corresponding points based on the two local frames.
We represent rotations r j as quaternions and propagate them
(element-wise) over the surface by harmonic interpolation
following the approach in [ZRKS05].

Interpolating rotations requires solving one Laplace sys-
tem in the four components of quaternions. After normaliza-
tion the result is a field of rotations, and for every vertex of
the template we rotate associated Laplacian coordinates d.
The application of all rotations simultaneously can be writ-
ten as linear operator R such that for the initial deformation
of the template we solve

A>Ax = A>

(

S R d
q

)

, (2)

where A> = (L>
,C>) (from (1)) and the diagonal scaling

matrix S = I is the identity for now.

The result (see Fig. 1 (c)) already shows the desired pose,
however, ignoring the fact that template and input data may
be (and generally are) scaled differently may distort the re-
sulting shape in an unacceptable way. In order to fix this
issue, we estimate a global scaling factor λ for the template
which is applied to the Laplacian coordinates d. Therefore,
we compute discrete geodesic paths (using Dijkstra’s algo-
rithm) between marked points on the original template and
the initially deformed one. We obtain a global scale as aver-
age of the ratios of geodesic distances on both shapes. (Our

(a) (b) (c)

Figure 4: The cylinder example illustrates the effect of dis-
placement propagation for the final reconstruction. (a) Tem-
plate and point cloud, there is no data for the left half; (b)
result after iterations using only data points; (c) for the fi-
nal result, displacements were propagated to the region with
missing data.

experiments show that a global scale is sufficient, and lo-
cal diversification does not yield significant improvements
except for extreme configurations, which did not occur in
any of our examples. On the other hand simple global mea-
sures such as ratio of bounding box diagonals are not reli-
able enough due to different poses.) Hence, we now solve
the same system (2) again with updated right-hand-side ap-
plying S = λI for scaling. A result is shown in Fig. 1 (d). In
the following we will re-apply the same system with updates
in the constraints C and q.

5.3. Iterative improvement of approximation

The initial deformation of the template mesh using proper
scaling globally captures the pose of the point cloud. How-
ever, the deformed shape does not yet provide sufficient local
approximation of the data. The following iterative process
moves the template nearer towards the data points guided
by local correspondences which are established from simple
heuristics. This local matching is motivated by iterative clos-
est point [BM92] (ICP) algorithms for finding (rigid) trans-
formations for shape registration.

For every vertex of the template, we search for matches
in the nearest data points within a maximum distance rmax.
Of all points found for a single vertex j those are rejected
for which their normal deviates from the vertex normal by
more than a maximum angle. From the remaining points
we compute a positional constraint q j as a weighted aver-
age of the point positions. We restrict these displacements to
their contribution in direction of template normals to avoid
tangential drift. The weighting is based on point-vertex dis-
tances mapped by a quadratic B-spline transfer function
which maps distances 0 and rmax to 1 and 0, respectively,
with C1 continuity at the interval boundaries. This infor-
mation is used to update C and q in (2), where we chose
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(a) (b)

Figure 5: (a) Closeup of the final result in Fig. 2 (e); point
cloud overlaid for comparison. (b) Closeups to the legs to
visualize the effect of displacement propagation (bottom).

An+ j, j = C j, j = w j using the same weighting scheme as
above but now based on distances to averaged target posi-
tions q j instead of data points. The updated system is then
solved again, yielding a new deformation of the template.
Starting from this new configuration, we search again for lo-
cal matches and iterate the process. Note that this formula-
tion only involves changing C and q, where prior constraints
are either preserved or overwritten by updates. Fig. 3 illus-
trates the iteration.

The local matching for finding new constraints must fail
in regions where the point data is erroneous, e.g., due to mea-
surement error, insufficient sampling, and missing data. This
situation cannot be compensated by manually choosing cor-
respondence and because of the lack of data no meaningful
deformations can be extracted. Besides the fact that such re-
gions may be subject to manual postprocessing, they must be
excluded from local matching as they typically lead to false
matches. This is done by restricting the search not only by
local distance and angular thresholds but also to the globally
defined region of interest within the point cloud.

After a sufficient number of iterations (4-15 for all our
examples), the template mesh is deformed in a way that it
approximates the point cloud in global pose and local shape
(Fig. 3). Of course this refers only to shape regions where
point data is available (and the region of interest, respec-
tively). In a final step, we improve on the remaining regions
of the deformed template for which no counterparts exist in
the data. We identify regions with sufficient point data sim-
ply as all vertices j for which (local) constraints have been
found before, i.e., C j, j > 0. For all such vertices, we mea-
sure the displacement into normal direction for the initially
deformed template and the result of the last iteration, respec-
tively. These displacements capture shape information of the
point cloud, and their lengths are then propagated over the
template mesh in the same way as the rotations. The inter-
polated values are added as additional positional constraints

(a)

(d)

(b)

(e)

(c)

(f)

Figure 6: Fitting of two heads. (a) Template with 11 mark-
ers; (b), (c) data sets; (d), (e) result for (b), the overlay of
points illustrates coverage of the data; (f) result for (c).

by displacing the points of the initial deformation in direc-
tion of their normal to the interpolated distance. These new
positional constraints obtain low weights (we used w j = 1

2 ).
We observe that this heuristic provides good results, Fig. 4
illustrates the effect for a simple example, the closeups on
Fig. 5 (b) show the effect on the female model (Fig. 2).

6. Results and discussion

We have implemented the method described above in an in-
teractive environment. Positioning a constraint point and ad-
justing its local frame is a single action that the user applies
on template and point data, respectively. In rare cases it is
necessary to place a few markers freely, away from the data;
this situation occurred only for the hand example in Fig. 7,
which consist of a single scan without backside. A typical
fitting session takes between 5–20 minutes (in particular for
all our examples). System response is immediate such that
the overall timing is driven by user interaction. Computation
times such as matrix factorization are negligible in this con-
text; this fact is also known from Laplacian-based interac-
tive shape editing systems (see, e.g., [Sor05,BBK05]). Com-
putational cost is dominated by matrix operations and thus
size of the template (rather than nearest neighbor searches
on the point cloud), all automatic stages of iterations were
performed in less than 30 seconds for all models.

Our method successfully addresses common problems in
point cloud reconstruction: noise, outliers, fragmented scans,
and missing parts. The weighted averaging of iterative defor-
mation together with smoothness inherited from the Lapla-
cian operator effectively acts as a low-pass filter suppress-
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(a) (b) (c) (d) (e)

Figure 7: A template hand model (a) is fitted to a single range scan (b). The final result is shown in (c)–(e) from different views.

ing artifacts such as high-frequency noise and outliers on the
point data. Our method has even proven to be robust towards
poorly aligned fragments combined in a point cloud (Fig. 9).

In all our examples, we observed a significant amount of
missing data for the scans, e.g., belly of the camel, back of
the hand/head, and large parts of the human models (1, 2,
6, 7, 9). These parts are filled with the template shape in a
natural way, transitions to such regions are hardly noticeable
in the results.

We show that our method is capable of handling extreme
deformations (Fig. 2, 8) to different poses and even shapes.
However, depending on the quality of the input and the ap-
plication it is sometimes not desirable to align each of the
small details of the template to the points. For example the
left hand of the original female model in Fig. 3 (a) is in a
fist while the template displays an open hand. Although our
method is capable of this deformation (see Fig. 7), it would
require user interaction and careful placement of markers
and cannot be achieved automatically. Therefore, we ex-
clude the hand part from iterative matching and deformation.
Masking out certain parts or focussing on a region of inter-
est, enables us to preserve certain details and features of the
template model, e.g., the head in Fig. 2 or most noticeable
the legs in Fig. 8. For other applications, it is vital to keep
parts of the template that do not match semantically to the
point data such as the open and closed eyes in Fig. 6. Table 1
summarizes facts on all of our examples. The main limita-
tion of our method is the incapability to reconstruct sharp
features and small details of the point cloud. This is due to
the smoothing required for noise suppression, and also a fea-
ture sensitive resampling of the point data would be required.
A possible approach to this problem could consist in extend-
ing coating transfer [SLC∗04] to point cloud settings.

7. Summary

We present a method for surface reconstruction from point
cloud data using a template mesh. Our method deforms the

model figures #marks #verts #pts #err
camel 1 30 39024 6195 0.57%
female 2, 5 46 13784 11798 0.38%
head 1 6 (b) 11 16544 52954 0.12%
head 2 6 (c) 11 16544 65593 0.16%
hand 7 33 25735 114767 0.25%
woman 9 26 13784 11798 0.32%
bronto 8 41 39024 23982 0.55%
horse 8 33 48485 6195 0.33%

Table 1: Summary on datasets used. Columns refer number
of correspondence markers (# marks), vertices in the tem-
plate (# verts), points in the point cloud (# pts), and rela-
tive approximation error as ratio of one-sided Hausdorff dis-
tance from points to results (ROI only) to length of bounding-
box diagonal.

template using a simple Laplacian setting to capture the pose
of the point cloud guided by user generated correspondences
and a subsequent iterative adjustment. It is interactive and
intuitive to use. Finally, in our examples we show the ef-
fectiveness of the method even for data with noise, outliers,
holes, and missing parts, and for large scale deformation —
all of which are common challenges in surface reconstruc-
tion from point clouds.
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(a) (b) (c) (d) (e)

Figure 8: Left: The Brontocamelosaurus is an example of extreme deformation using the camel template (Fig. 1(a)). (a) Point
cloud; (b) initial deformation; (c) final result. Lower legs, tail and ears were masked out. Right: Use of the horse (d) model as
template for the camel point cloud from Fig. 1 (b), result shown in (e).

(a) (b) (c)

Figure 9: Reconstruction of a female model from a noisy
dataset consisting of two fragments (front and back) which
are poorly registered. Note missing parts and artifacts from
shadowing in the input data. (a) Template; (b) point cloud,
hands and supporting bars were masked out; (c) result.
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