
Incremental Raycasting of Piecewise Quadratic Surfaces on the GPU
Carsten Stoll*
MPI Informatik

Stefan Gumholdt
TU Dresden

Hans-Peter Seidelt
MPI Informatik

ABSTRACT
To overcome the limitations of triangle and point based surfaces
several authors have recently investigated surface representations
that are based on higher order primitives. Among these are
MPU, SLIM surfaces, dynamic skin surfaces and higher order iso-
surfaces. Up to now these representations were not suitable for
interactive applications because of the lack of an efficient rendering
algorithm.

In this paper we close this gap for implicit surface representa-
tions of degree two by developing highly optimized GPU imple-
mentations of the raycasting algorithm. We investigate techniques
for fast incremental raycasting and cover per fragment and per
quadric backface culling. We apply the approaches to the rendering
of SLIM surfaces, quadratic iso-surfaces over tetrahedral meshes
and bilinear quadrilaterals. Compared to triangle based surface ap-
proximations of similar geometric error we achieve only slightly
lower frame rates but with much higher visual quality due to the
quadratic approximation power of the underlying surfaces.

Keywords: raytracing, graphics hardware.

Index Terms: 1.3.7 [Computer Graphics]: Raytracing GPU
based raycasting;
1 INTRODUCTION
Second order primitives offer large advantages over traditional flat
rendering primitives like triangles or points. Not only are the first
order surface derivatives smooth (which is especially noticeable
when using environment maps and phong shading), but it is also
possible to visualize more complex geometry with a lower number
of primitives.

Natural applications for such kind of primitives are thus surface
reconstruction algorithms and methods which deal with modeling
and deformation of such, where an interactive visualization is cru-
cial.

To determine the shape and shading of a quadratic surface it is
necessary to either sample it and render it using other primitives
available in graphics hardware or to perform a per pixel raycast-
ing to determine the appearance. We will show that a raycasting
approach is not only viable but also fast enough for interactive vi-
sualization of models consisting of several 100k quadratic surface
elements.

In this paper we will show how to exploit the processing capa-
bilities of modern graphics hardware for efficient visualization of
quadric surface primitives. Our contributions are

* An incremental raycasting approach that minimizes the com-
putational load of the fragment shader and in this way signif-
icantly increases the fillrate.

* Conservative per quadric backface culling tests that increase
performance by a factor of two.

*e-mail: stoll@mpi-inf.mpg.de
te-mail: sg30@mail.inf.tu-dresden.de
te-mail: hpseidel@mpi-inf.mpg.de

IEEE Symposium on Interactive Ray Tracing 2006
18 - 20 September, Salt Lake City, UT, USA
1-4244-0693-5/06/$20.00 ©2006 IEEE

* A reformulation of the expressions for the solution of the
quadratic ray-quadric intersection that avoids an expensive
test in the fragment shader.

* A conversion formula from bilinear quadrilaterals to quadrics
that facilitates the application of our method also to bilinear
quadrilaterals.

2 RELATED WORK
Graphics hardware development in the last years has made it more
interesting to use other primitives for rendering than triangles. Of-
ten models have a density so high that a single triangle would cover
not much more than a single pixel on the screen. This and a more
general interest in points as primitives for other applications such as
modeling led to the development of a large number of point splat-
ting techniques such as from Rusinkiewicz and Levoy [17]. These
techniques have grown more advanced in recent years, adding more
information to the single splats to be able to visualize sharp corners
like Pauly et al in [13] and generate smoother shading and better
looking images like Botsch et al presented in [3] and [2] by using
additional surface curvature information. All current point splat-
ting approaches have in common that they are actually flat planes
bounded by an ellipsoid and do not vary the actual geometry in each
splat, meaning that often more splatting primitives have to be used
to approximate geometry than would be necessary in a higher order
surface approach.

Quadratic surfaces have been a basic primitive in computer
graphics for a long time and their properties and techniques for vi-
sualization are very well researched (see for example Bloomenthal
and Wyivills Introduction to Implicit Surfaces [1]).

Examples for recent techniques, that use piecewise quadratic
or cubic surface patches to approximate or interpolate highly de-
tailed surfaces, are the multi-level partition of unity and the SLIM
surfaces by Ohtake et al ([1 1], [12]). In both techniques piece-
wise polynomial surfaces are blended together in order to gener-
ate a smooth surface representation. For SLIM surfaces a software
based raycasting algorithm was proposed, that simplifies the blend-
ing technique to a screen space blending approach (see [12]).

Edelsbrunner use parts of spheres and hyperboloids to represent
a C1 smooth skin surface over a union of spheres in [5]. This surface
representation is used mainly for visualizing molecular structures.

Roessl et al use piecewise quadratic splines over a tetrahedral
subdivision of a regular grid to approximate a volumetric data set
as close to interpolating as possible ([16]). The approach is applied
to the visualization of iso surfaces and a software implementation
of a raycasting algorithm is proposed.

Raytracing on graphics hardware has been a focus for many re-
searchers in the past few years, from general implementations like
Carr et al [4] or Purcell et al [14], who both implemented complete
raytracing pipelines for triangular objects, to more specialized al-
gorithms for volumes such as Krueger and Westermanns work in
[10] and implementations of acceleration structures like Foley and
Sugermans KD-tree implementations [6].
A few approaches have been developed to use modern graph-

ics hardware to efficiently visualize quadric surfaces or subsets of
them. One of the first approaches was presented by Gumhold in [7],
where ellipsoids are splatted as on screen quads and a ray-ellipsoid

141

Figure 1: Dragon SLIM model rendered with our system with different shaders applied at roughly 40 fps. From left to right NPR shading,
Reflection mapping, Phong Shading.

intersection test is evaluated for each fragment of the splat. An im-
portant contribution was the minimization of the load for the frag-
ment shader by pre-computing all parts of the ray-ellipsoid inter-
section and normal computation that vary linearly over the splatted
quad in the vertex shader. We refer to this optimization as incre-
mental raycasting. Klein and Ertl describe an ellipsoid-splatting
approach that works with point splats in [9]. This reduces data traf-
fic between CPU and GPU but approximates the ellipsoids not as
close as a quad leading to a higher fragment count. In [15], Reina
and Ertl present a hardware accelerated raycasting approach that
can visualize glyphs, which are composed of spheres and cylin-
ders. Stoll et al use a splatting technique to visualize generalized
cylinders by rendering a quad on an approximating silhouette of a
segment of the generalized cylinder and interpolating normals and
depth values on those in [19]. Wooed et al and Toledo and Levy
raycast general quadratic implicit surfaces as we do, but only use
an unoptimized non incremental raycasting approach and do not
discuss backface culling nor do they study modern quadric based
surface representations such as SLIM surfaces ([21], [20]).

Sigg et al just published their work on quadric raycasting in [18],
but unlike our work focus on Spheres, Ellipsoids, and Cylinders and
visualization of molecular structures, and do not deal with culling
and blending of primitives.

3 OVERVIEW
Modern GPUs allow us to load custom programs to be executed
into two stages of the graphics pipeline, the vertex shader and the
fragment shader. The vertex shader is responsible for transform-
ing the incoming vertices into screen space coordinates and setting
up further values to be interpolated across the primitive. The frag-
ment shader is executed for each pixel generated when rasterizing
the primitive and outputs color and depth value. A current trend
in polygonal mesh rendering is to overtesselate surfaces such that
several triangles fall into one pixel on the screen. This is not only
unnecessary but also leads to aliasing in the shading if the surface is
rough. We therefore assume that in a typical rendering application
a multiscale technique is used that ensures that in average several
pixels are covered by one primitive. Especially for higher order
surfaces this makes a lot of sense. Therefore, there are many more
fragments which need to be processed than vertices and it is impor-
tant to move as many calculations as possible to the vertex shader
and keep the fragment program short.

Raycasting maps naturally to this separation into per vertex and

per fragment calculations. To raycast a single quadric surface we
need to define the camera position e, the camera parameters (view
direction, fov, resolution, aspect ratio) and the active light sources.
For each of the pixels of the camera we need to calculate an inter-
section of the ray emanating through it and the quadrics.

Unlike traditional raycasting approaches, we are not able to test
for an intersection with all quadrics for a given ray at once and
so have to fall back to a splatting approach, where each quadric is
rendered on its own and the front most intersection is determined
with the help of the depth buffer of the graphics cards.

As we are only interested in a small part of the quadric surface, it
is possible to calculate a screen space bounding area which defines
an area of interest to which we will limit all ray/quadric intersec-
tion tests. For SLIM surfaces the area of interest is a screen space
quadrilateral and for tetrahedral meshes and bilinear quadrilaterals
the front facing triangles of a tetrahedron.

The GPUs vertex shader is used to precalculate per quadric and
frame constant values based on the current viewpoint and determine
if the quadric can be culled completely. In case of SLIM surfaces
we also determine the position of the vertices for the area of interest
to tightly encapsulate the screen space projection of the bounding
sphere.

The fragment shader calculates the actual intersection point of
the current ray with the quadric surface and its depth value, as well
as the surface normal at this position. This information will then be
used to either calculate the shading with a phong lighting algorithm
or be stored in render buffers for further processing with deferred
shading.

In Section 4 we will explain the mathematical background of our
algorithms, followed by a more detailed explanation of the imple-
mentation in Section 5.

4 THEORETICAL CONSIDERATIONS
There are different quadratic surface representations. The simplest
one is a graphfunction fG(x, y) that specifies the height over a pla-
nar domain, where typically some estimate of the tangent space is
used. A quadratic graph function is given in the monome basis by
a sum koo + klox1+-koly-+ kl lxy-+k2oX32 + k02Y2.
An implicit surface is defined via a function fj(x,y,z) over the

three dimensional space. The surface of the function is defined as
the set of all points for which fj (x, y, z) 0, the interior as all points
f y(x, z) <0 and the exterior as all points with fj (x, y, z) > 0. Again

142

a quadratic implicit surface, which is also called a quadric, is given
by a sum over all mixed terms in x, y and z of maximum degree two.

The third representation that we will consider is a bilinear
quadrilateral, which is defined in parametric form with four 3d
points pl, p4

S(U, V)= (1-V) ((1 -U)p1+ Up2) + V -U)p4++Up3 (1)

The most general of these three representations, that also subsumes
the other two, is the implicit quadratic surface. Therefore we de-
velop our rendering approaches for the implicit representation and
map the other representations to the implicit one. The graph func-
tion can trivially be mapped to an implicit representation via the
equation z fG (x, y), i.e. the corresponding implicit representation
is simply fi(x, y, z) z -fG(x, y). Section 4.5 describes an algo-
rithm that maps a bilinear quadrilateral to a quadric.
A single quadratic surface is quite limited in its descriptive

power. All the applications discussed later on combine several
quadratic patches into a complex surface. For this, each patch is
clipped with a bounding volume. Two types of bounding volumes
are discussed in this work: bounding spheres and bounding tetrahe-
dra.

In the next subsection the basic notation is introduced. Subsec-
tion 4.2 derives the expressions necessary to compute ray-quadric
intersections. In subsection 4.3 the expressions are simplified by
choosing the coordinate origin in the eye point. Finally, we dis-
cuss backface culling on a per fragment and per quadric basis in
subsection 4.4.4.

4.1 Basic Notation
Three equivalent notations are commonly used for the implicit func-
tion fj of a quadric:

1. with 10 coefficients kijk of the mixed monomes in {x,y,z},
where 0 < i,j,k <2 and i+j+k <2:

fi(x,y,z) kOO +kjoox+kojoy+koojz+
kijoxy+kojjyz+kjojzx+
k2ooX2 + ko2Oy2 + koo2z2,

4.2 Ray-Quadric Intersection
For rasterization we have to intersect the ray emanating from the
eye point e in direction of the view vector vi with the quadric Q.
This can be simply done by substituting the parameter form of the
ray

x(A,) ee+Av

into the equation defining the points on the quadric. For the ma-
trix representation and the homogeneous matrix representation this
results in

O (e+AV)tA+2bt (e+iV)+c
O (e+-2 -)tQ(- +- vi)

0 VAO'+ 2 etA +bt) v+ etA+2'bt e+c

O -t= vt 2 + 2etQON + etQe

(5)

where we exploited the symmetry of the matrices. The second pair
of lines is in the standard form for solving a quadratic equation

0 = X2-+2pfX+y,

(a

v Av
(etA +bt)

etA 2b e)

(6)

ii -Ptof
i.e. | tQvof

tO

with the solution for A

ay
oc

(7)

Equation 7 is not the only way of writing the solutions for i,
but it has the nice property that A_ is exactly the solution where
the quadric surface faces the viewer. We will discuss this in sec-
tion 4.4.2 in further detail. There, we will also derive a different
expression for 2L resulting in a more efficient implementation in
the case where backface culling is turned off.

2. with a symmetric 3x3 matrix A, a 3d vector b and a constant

fi(x) (xtA + 2bt) x + c, with x -

kloo /
c = kooo, b=::::: 2kolo ,

-2kool
k200X

A ' kilo
\ 2klol
(ikilo 1 kiolA

ko20 :kOll , or

-kkol I koo2 /

3. with a symmetric 4x4 homogeneous matrix Q:

0 itQj, with Q A i (I),

y (2)
z

4.3 Choosing the Origin
To simplify equation 6 we transform the world coordinate system
such that the eye point becomes the coordinate origin. As a result
we also have to transform the representation of the quadric. Let y
be a point in the transformed coordinate system and x one in the
world coordinate system. Then the transformation can be written
as

y x e y i (e 0), with

(3)

To find out, what the transformed quadric Q' looks like, we substi-
tute the inverse transformation in equations 2 and equivalently 4:

O ((y+e)tA+2bt) (y+e) +c
(4)

where the tilde over the symbols denotes the homogeneous repre-
sentation. Please note that the transpose of a point or vector times
another point or vector corresponds to a scalar product. Thus jtQj
can be interpreted as the scalar product of the vector x and the vector
Qi. In the following we use the matrix and homogeneous notations
for the quadric because of their compactness.

yt (Ay+2(b+Ae)) +c+et (Ae+2b) (8)

Comparing the result in equation 8 with equation 2 we can read off
the transformed quadric as

(, (A' b';) tcA b+Ae2)
b+Ae c+et (Ae+2b)

(9)

143

At

a)

AI

' Iu

A1t'I
-6-

0
b)

-I..AI

Figure 2: Ranges for the two solutions of XI in the case that a) Y > 0,
and b) 75 < 0.

In the transformed coordinates the expressions from equation 6 for
the parameters {oa, ,B, y} simplify to

(

i.e. t Vj
J

t0tQ/
bt/
c'

Please note that the homogeneous component of the view vector v
or V is zero and not one.

4.4 Backface Culling
4.4.1 Normal Test

To perform backface culling on implicits we first need access to the
surface normal. As we defined the exterior of an implicit surface
from fj(x) > 0, the surface normal is proportional to the gradient
Vx of fj(x) with respect to the coordinates of x. Substituting equa-
tions 2 and 4 yields

fi(x) OC -vx (xtA+2b)x+c Ax-+b = IXY'Z (

where the last expression uses the coordinate selection operator ""II,
to select the first three components of the homogeneous vector Qi.
We are now in the position to check for a given point x on the

surface, whether the normal points in direction of the viewer or
away from it. With the view vector vi x -e the backface culling
test becomes

0 <v n 0 < vAx +vb =VQ. (12)

4.4.2 Per Fragment Backface Culling
In order to restrict our considerations to points on the implicit sur-
face, we use the result from the ray-quadric intersection into the
backfacing test of equation 12

o < VIA(e +- ,V) + v b = Aia + (e A + bt)vX
O < 0a +,B. (13)

A very interesting fact can be derived if we plug in for A the solu-
tions in the form of equation 7:

O<a+,B + /2_2ay. (14)

This means that in case of two solutions, there is always a back-
facing and a frontfacing solution and the solution with the minus
before the square root does always select the front facing solution.
If backface culling is turned on, we can simply use the solution
with the minus and can neglect the other solution completely. This
significantly speeds up rendering.

Figure 3: Stanford bunny. Left: Complete SLIM model. Right: Sur-
faces culled by the per quadric backface culling test.

4.4.3 Without Per Fragment Backface Culling
If backface culling is not wanted, for example in case of visualiza-
tion of a cylinder, where we want to see also the inside at the ends,
both solutions need to be considered. This complicates the intersec-
tion test, as we not only have to check for both solutions if they are
inside the bounding volume, but also need to determine the valid
solution closer to the observer.

Interestingly, one can rewrite the solutions for A from equation 7
in the following manner:

/: /3+-pi/2 (Xa -p T ay
T_ a -p TV/a2y

p2 (p2 ay)

A.T-()2 a
y 7 7~~

y
/3+T 2 -ay

(15)

For the expressions Xa in equation 7 the two solutions are sym-
metric around the location A =-(:. On the other hand, the two
solutions A' are not placed symmetrically around - 7 and Fig-
ure 2 shows the ranges of i' and A' for the two cases - 7 < 0
and - 7 > 0. For both cases, A' is the first solution which is larger
than zero. In raycasting terms, A+ always specifies the ray-quadric
intersection closer to the eye point. This simplifies the calculations,
as one can first check the solution A+, and only needs to check the
solution i' if the first solution is outside the bounding volume. A
similar simplification of the ray intersection test is not possible with
the expression Xa of equation 7.

4.4.4 Per Quadric Backface Culling
To reduce the load of the fragment shader it is more efficient to also
clip quadrics that are backfacing all over the bounding volume, if
the user enables backface culling. For a conservative test we have
to ensure that no ray from e in direction of vi passing through the
bounding volume also intersects the quadric in a front facing man-
ner. In the coordinate system where e 0, we can parameterize the
backface test over v'. A quadric can then be culled if the minimal
value of Vth over all possible v' is still larger than zero

o <mi (v-th(v)) min((A)VIV
(16)

We are only interested in those locations in view direction for which
A > 0. Therefore the <-sign is preserved when we multiply with A

0 < min (VItAv'2 +

144

/ ve' -o rZ c'-nh
r

Figure 4: An arbitrary point y in the bounding sphere can be split into
Csph and a vector rz.

Furthermore, we can restrict ourselves to points on the implicit sur-
face. For these, V'tAv '2 + 2Vtb/X + c' = 0 holds and we can elim-
inate the quadratic term in A and v'

O<min (-Vtb'-c') =-c'-max Vtb'). (17)

This much simpler test is specialized for the two bounding volumes
of consideration in the next two paragraphs.

Backface Culling with Bounding Spheres Firstly, we dis-
cuss the case that the bounding volume is a sphere with radius r
centered at csph, or clph in the coordinate system with the eye point
in the origin.

Independent of A we consider all points y inside the bounding
sphere that are also on the surface of the quadric. We denote the
set of points in the bounding sphere with S. In the local coordinate
system, y coincides with V'X and the test in equation 17 is reduced
to

c' <-max (ytb') (18)

We can split the position vector y into the constant position vector
C/ph to the sphere center plus a vector rz pointing to an arbitrary
point inside a sphere of radius r. Let U be all points in a unit sphere.
Then we can rewrite the test as

-csphb-r max(rmax .

P4
/E* T-1

4-p1 2 3 ^ _
V ~~T

pi

P = l+f

9g

0° u 0°
., 10

Figure 5: Illustration of affine transformation of an arbitrary bilinear
quadrilateral into a coordinate system suitable for conversion to a
quadric.

4.5 Conversion of Bilinear Quadrilaterals to Quadrics
The geometry of a bilinear quadrilateral is defined by four cycli-
cally arranged corner points (P1,P2,P3,P4). The quadrilateral is
completely contained in the convex hull of the four points and there-
fore in the tetrahedron over the four points Pi. The idea is to render
a bilinear quad with a quadric that is clipped by the tetrahedron
(p=L .4). The only question that has to be solved is whether a quad
can be represented as a quadric and how to compute the quadric
from the four points.

In the following we assume that the quad is not degenerated in
the sense that the four points do not reduce to a triangle, segment
or even a point, since in any of these cases, one can render the
corresponding primitive instead. The special case of a planar quad
can be rendered with two triangles.

Under the non degeneracy assumption we can define an affine
transformation T-1 that brings the quad to the very specific config-
uration shown in figure 5. The transformed points have the coordi-
nates

(Pi P2 P3 P4)
01 1+e 0

00 +f 1
0 0 g 0

The maximum is achieved if z has maximum length 1 and at the
same time is parallel to b', what results in the simple per quadric
backface culling test for spherical bounding volumes

c' < c/stphb'- ri b'" .

Backface Culling with Bounding Tetrahedron Let
(p/, p/, p/,P4) be the four corner points of the tetrahedron in the
coordinate system with e 0. A point in or on the tetrahedron is
given by

4 4

y cip', with 1i= 0AO< ai < 1.
i=l i=l

This can simply be plugged into equation 18:

((4 t)

The maximum over the &i can only be achieved at the corners of
the tetrahedron itself, resulting in the simple to evaluate backface
culling test for tetrahedral bounding volumes

(19)c'<-max(p.b1).

If we plug the transformed points into equation 1, we can describe
the surface points y in transformed space by the simple expression

u(I +ve) \
y V(1+uf) I.

(uvg

The next task is to set this equal to the vector (x' y/ z') and
to eliminate u and v.

x' / u(I + ve)
y/ (v(l + uf)

(z uvg

(xgv z'(1+ve)
y'gu J- z'(1+uf)

((x'g -ze)v (Z

(x'g)gz zf) = z/g

This yields the coefficients for the quadric and proves the ability of
quadrics to represent bilinear quadrilaterals.

2g 2x y -2fgx'z' -2egy'z' + 2efz 2-2gz' = 0. (20)

145

t /
c < max (Csph + ri) b

ZEU

y "

0
r

P4 = I

\,O -

v

The quadric in the affinely transformed coordinate system is there-
fore

A

-fg

2g2 fg
0 eg
-eg 0

b' (0
0
_g

) c' 0.

(21)
Finally, we have to transform the quadric back to world coordinates.
The corresponding transformation T is composed of a 3x3-matrix
M and a 3d translation vector t, i.e. p Mp' + t, with

M (P2-P1 P4- P (P2 -P) x (p4 -P)),
t Pl. (22)

To find out how the quadric transforms under an affine transforma-
tion, we plug p' M- '(p -t into the quadric:

(p tet (M-1)tA/M- 1 (p- t + 2_b/tM- 1 (p- t + cl,
and we can read off

A (M 1)tA/M-1 (23)
b = (M-l)tb -At (24)
c = c' +T(At-2(M 1)tb;). (25)

The very last thing is to compute e, f and g:

P3 M '(ps3) (26)
e p= - 1 (27)
f p>3y - 1 (28)
g p'3 z (29)

Equations 22 to 29 completely define the quadric that represents the
bilinear quadrilateral (pi, P2, P3, P4)
5 IMPLEMENTATION
All our shaders were implemented in the OpenGL Shading Lan-
guage. The rendering of a quadric inside a bounding sphere or
bounding tetrahedron works as follows: the bounding volume is
splatted on the screen by a quad in case of the bounding sphere or
the frontfacing triangles of the tetrahedron. In this way all frag-
ments corresponding to rays from the eye point which can intersect
the quadric inside the bounding volume are covered. The vertex
and fragment shaders are optimized according to the paradigm of
incremental raycasting, which means that all computations that lead
to temporary results, which vary linearly over the splatted quad or
triangles, are precomputed in the vertex shader and only the final
evaluation of the temporary results is done in the fragment shader.
This is very important as in nearly all applications the rendering
is fillrate limited and speeding up the fragment shader significantly
increases the frame rate.

From the formulas derived in the previous section we can extract
an incremental raycasting approach with the following distribution
of the work onto vertex and fragment shader:

Vertex shader: The user passes the homogeneous representation
Q of the quadric in form of a 4x4 attribute matrix to the vertex
shader. The bounding sphere is specified in a 4d vector with
the radius in the fourth component. A bounding tetrahedron
on the other hand is specified by a second 4x4 attribute matrix
with the four corner points. Once per frame, a vector val-
ued constant is set to mark the current eye point e. The shader
uses equation 9 to transform the quadric to the coordinate sys-
tem with e 0. Next, the per quadric backface culling test
from equation 18 or 19, respectively, is evaluated. In case of

Figure 6: State of the depth buffer for the shading pass. The dotted
gray line depicts the depth buffer after the first pass. The blue sur-
faces are culled, the black surfaces are rendered and blended at the
overlap.

quadric culling the output position is set to a point outside of
the current clipping view pyramid, which removes the quadric
from further processing. After this, the constant term and the
terms linear in the view vector c', bPtv, V and VWtA, which are
necessary for the ray-quadric intersection of equation 10 and
the computation of the surface normal, are pre-computed and
passed as varying attributes to the fragment shader.

Fragment shader: The coefficients y and ,B from equation 7 are
direct inputs to the fragment shader. a results from a single
scalar product of the two interpolated vectors Av' and v.' Spe-
cial care has to be taken if a becomes small and equation 7
reduces to a linear equation in A. This case is caught by a
separate test and A is computed to -y/2/. In both cases, the
resulting A is used to calculate the intersection point x, which
is clipped against the bounding volume. The fragment's nor-
mal vector is calculated from equation 13, again with the help
of the interpolated vectors, and used to calculate the fragments
shading or stored in the render buffer in case of the SLIM sur-
face application, where the normals of adjacent quadrics are
blended.

In the following we describe the application of our quadric
shaders to SLIM surfaces and quadratic implicits over tetrahedral-
ized regular volumes in more detail. The data needed for the vi-
sualization of both methods is stored in a display list to eliminate
the CPU/GPU bottleneck. Note that vertex buffer objects do not
present a noticeable increase in rendering performance in our test
situations as we are only handling static geometry. If dynamic mod-
ifications of the quadrics need to be performed, vertex buffer objects
are the more appropriate choice for storage. This will be addressed
in future work.

5.1 Applications
5.1.1 Sparse low degree implicits
The so called SLIM surfaces have been introduced last year in [12]
and present an efficient combination of surface reconstruction with
implicit surfaces similar to previous work like MPU surfaces [11]
and splatting algorithms in the line of [2].
A SLIM surface consists of a set of spheres, each containing a

polynomial implicit surface approximating points of a point cloud
model to a given error threshold. The surface is visualized using a
raytracing approach which generates a weighted sum of the first few
intersection points and normals of each quadric along each ray and
shading the point using the normalized result. While this "per ray"-
blending is only an approximation to an actual weighted blending
of the implicit surfaces, [12] show that the method is very efficient
and the error negligible. This per ray blending can be implemented
in a straightforward way on the graphics hardware using a three
pass deferred shading algorithm similar to [2].
A SLIM quadric is splatted using a single quad primitive which

is extruded on the vertex shader to tightly encapsulate the quadrics

146

Figure 8: By including an additional clipping plane in the SLIM rep-
resentation as illustrated on the left (clipping plane in red, clipped
quadrics in dotted gray), sharp features can be modeled. The right
image shows two paraboloids meeting at a sharp angle.

Figure 7: Stanford bunny and armadilo models rendered with a sim-
ple non-photorealistic shader in the deferred shading pass.

bounding sphere in screen space coordinates. A texture containing
a circular mask can be used to quickly discard fragments in the
corner of the quad which lie outside of the bounding spheres screen
projection to avoid unnecessary intersection tests.

Note that it is possible to use point sprites instead of quads as
base primitive like [2] and thereby reducing load on the vertex pro-
cessor, but points are limited in their maximum screen space size
and will not allow for a close up inspection of the models as holes
will appear. With the next generation of the graphics hardware the
new programmable geometry shader in the graphics pipeline will
make it possible to select the primitives on the fly, allowing for op-
timizations in this stage.

After calculating the intersection position x we clip against the
bounding sphere by testing if Ix -csph ll21r2 < 1. In accordance
to [12] we calculate a weight w for the generated fragment which
is 1 at the center of the sphere and 0 on its boundary and smooth
in between. [12] chose a piecewise smooth function consisting of a
Gaussian in the first half and a quadratic polynomial in the second.
This weight can be precalculated into a ID-texture and used with a
lookup table in the fragment shader.

As it is essential that only the quadrics belonging to the surface
sheet are blended, the depth buffer needs to be initialized in a visi-
bility pass where all quadrics are rendered only to the depth buffer
with a small offset away from the eye point as sketched in figure 6.

In the following rendering pass, the quadrics are rendered with
disabled depth buffer write and enabled additive blending using sev-
eral floating point render targets, where position and normal values
of each fragment are cumulatively multiplied by their weight w in
the red, green and blue channels and the weights themselves are
added up in the alpha channel. The use of 8 bit render targets in-
troduces quantization artifacts and results in noisy images. Current
graphic cards support blending functions on 16 bit floating point
buffers, which proves to be sufficient and does not introduce any
noticeable visual artifacts.

In the final shading pass, one quadrilateral is drawn over the
complete viewport. A special fragment shader uses the position
and normal values of each of the previous render targets. For each
pixel on the screen, the position and normal vectors are divided by
their total weight in the alpha channel and the shading is computed.
Decoupling the rendering from the shading pass allows an easy im-
plementation of various shading techniques (see Figures 7, 11 and
12) and increases efficiency in scenes with high overdraw and a
higher number of light sources.
A simple extension to the SLIM rendering is to include an addi-

tional clipping plane in each quadric. This allows the representation
of sharp features by cutting parts of the quadric similar to the tech-
nique proposed in [13] for point splats (see figure 8).

Figure 9: Rendering of bilinear quadrilaterals. Left: with our tetra-
hedral implementation. Right: with standard opengl quads. Overlaid
black lines show the outline of the quad.

5.1.2 Tetrahedral surfaces

Quadratic surfaces contained in volumes are generated by a variety
of algorithms. Skin surfaces, introduced in [5], consist of spherical
and hyperbolical patches contained in polyhedral clipping volumes.
Skin surfaces are mainly used for modeling molecular structures
and a large variety of works on triangulation of these surfaces exits,
but no efficient raycasting method.

To be able to efficiently clip the quadric surfaces to the contain-
ing volume it is necessary to limit ourselves to tetrahedrons, as we
cannot pass an arbitrary number of clipping planes to the shader.
In a preprocessing step all polyhedrons are split into a set of tetra-
hedrons, increasing model complexity but allowing for an efficient
rendering of each element.

Another algorithm generating similar datasets was introduced in
[16], where quadratic patches contained in tetrahedral mesh vol-
umes are used to approximate iso surfaces in volume data. Their
method generates huge amounts of data, making the use of an effi-
cient rendering technique crucial.
A third application is the correct rendering of bilinear quadrilat-

erals. A hardware accelerated interpolation scheme for quadrilat-
erals is presented in [8], While their method correctly interpolates
values across the quadrilateral it does not approximate the geometry
correctly in all cases. Using equation 23, it is possible to convert
a bilinear quadrilateral to a quadric surface and render it using a
tetrahedral volume defined by the 4 corner points (see figure 9).

For the visualization of the isosurfaces, only one pass is neces-
sary since there is no need for any blending. Instead of splatting
screen space quads like in the SLIM surfaces, we render the faces
of the tetrahedron with enabled backface culling as area of interest.
This way each fragment is only rendered once for each quadric.

The fragment clipping of the tetrahedron is achieved by transfer-
ring the 4 bounding planes of the tetrahedron to the shader in a 4x4
matrix MIip and checking if M *ip* x < 0 for each fragment and
discarding it early if this is the case.

Afterwards the fragments normal, position and depth are written
to a set of floating point rendering buffers and visualized using a
deferred shading pass as in the third pass of the SLIM rendering to
reduce the overhead for the shading computations.

147

Figure 10: Visualization of the iso-surfaces extracted from the Fuel
and Marschner-Lobb volume datasets with [16].

Type
Brute force
No clipping

SLIM
Tetrahedral

Fill rate Quadrics/s
342.8 MF/s
600.0 MF/s
457.1 MF/s 6.27 M
400.0 MF/s 2.16 M

Table 1: Throughput measurements. Fill rate in million fragments per
second measured with NVidias nvshaderperf software for a GeForce
7800 GT. Quadric throughput measured in a 2x2 viewport in million
quadrics per second.

6 RESULTS
In this section we discuss the quality and performance of the ap-
proaches we implemented. The use of deferred shading allowed us
to easily switch between different shaders for visualization, such
as phong shading, environment mapping or non-photo realistic ren-
dering by simply exchanging the shader for the final pass. All mea-
surements were taken on an Opteron 2.4GHz with a GeForce 7800
GT GPU.

Compared to a brute force raycasting implementation as was
used in [20], our optimized fragment shader implementation is
nearly twice as fast before taking clipping into consideration. Even
with activated clipping subroutines our shader performs better (see
table 1). Measurements show that our implementation is capable
of rendering up to 6.27 M SLIM quadrics and 2.16 M tetrahedral
clipped quadrics per second (as long as all data is stored in GPU
memory).

Our implementation of the shaders is fast enough to render com-
plex models like in figure 11, which consist of 140k respectively
180k quadrics, in an interactive way with close to 25 FPS when
rendering in a full screen 1280x1024 resolution (see table 2). The
original software implementation of the algorithm is one order of
magnitude slower than our implementation, needing nearly one sec-
ond to render the scene with a single light source.

Also notable is the fact that, depending on model complexity
and screen size, our per quadric culling test can increase the frame
rate by a factor up to 2 by reducing the overdraw significantly. The
conservative backface culling tests remove quadrics efficiently (see
figure 3).

The quality of the resulting rendering is clearly superior to vi-
sualization using triangles, as can be seen especially well with the
environment shader on the Stanford Buddha in figure 12. The trian-
gle model was simplified to the same error threshold as the SLIM
representation (0.01% of the bounding box) and, while being ren-
dered faster, the SLIM surface is of clearly higher quality.

The tetrahedral surface approach is able to render iso surfaces
of a size of 65k tetrahedrals interactively with still over 25 FPS in
a 1280x1024 resolution. The lower performance compared to the
SLIM surfaces results from a higher data rate per primitive. Still
even huge iso surfaces like the Lobster CT scan (which consists of

Figure 11: SLIM renderings of the Stanford Lucy and a scanned
statue with 140k respectively 180k quadric primitives.

Model
Lobster
Sphere

Marschner-Lobb
Fuel

Tetrahedrals
1700148
137232
65844
36082

1024x1280
0.5
5.8
26.3
56.4

512x512
0.5
5.9
40.8
71.2

Table 3: Rendering speeds in frames per second for tetrahedral
quadric examples. Performance degrades fast with a higher amount
of primitives due to memory and bandwidth constraints.

nearly 2 million tetrahedrons) can be visualized in half a second
when streaming the data over the PCI Express bus to the graphics
card.

7 CONCLUSIONS
We presented a method to efficiently visualize implicit quadratic
surfaces in an interactive way using graphics hardware. We im-
proved rendering performance by pre-computing as much as possi-
ble in the vertex shader. Furthermore, we derived formulas for con-
servative per quadric culling that improve rendering performance
by up to a factor of two. We also showed how to reduce the num-
ber of tests in the fragment shader by reformulating the expressions
for the solution of the quadratic equation. Finally, we derived the
formulas necessary to map bilinear quadrilaterals to quadrics.

The results of our experiments strengthen our belief that higher
order surfaces can be a very viable alternative to classical trian-
gle rendering or point splatting approaches. On current hardware
we can achieve interactive visualization rates for reasonable large
models. The next generation of GPUs will bring new possibilities
to increase the performance of the algorithms even further, for ex-
ample by using the geometry shader to select levels of detail.

In future we plan to examine cubic implicit surfaces. We believe
that the examination of the solution set of the cubic equation al-
lows for similar reduction of tests in the fragment shader as in the

148

Model Quadrics GPU
1024x1280

culling
Statue 183774 24.9
Statue 74285 35.5
Lucy 140724 27.8

Buddha 49203 27.4
Bunny 5064 35.6

GPU
1024x1280
no culling

17.6
23.4
17.4
15.8
21.5

GPU
512x512
culling
32.5
68.4
41.7
73.8

>120.0

GPU
512x512
no culling

24.0
46.8
29.5
46.8
68.0

Software Software
1024x1280 512x512

1.02
1.33
1.08
1.06
1.13

5.72
6.02
5.05
3.70
3.22

Table 2: Rendering speeds in frames per second for our SLIM implementation and the original software in fullscreen 1024x1 280 resolution and
a 51 2x512 window, with and without culling. The per quadric culling nearly doubles performance in some situations.

Figure 12: Close up on the head of the Stanford Buddha rendered
with a line environment map and phong shading. Left: SLIM recon-
struction (11 fps). Right: Simplified mesh with similar geometric error
(24 fps). Note the higher quality of the reflection lines and specular
highlights on the quadric representation.

quadratic case. We also want to optimize our system for dynamic
updates by minimizing the data that has to be transferred from CPU
to GPU.

ACKNOWLEDGEMENTS
This work was supported in part by AIM@SHAPE, a Network of
Excellence project (506766) within EU's Sixth Framework Pro-
gramme. The software SLIM raytracer is courtesy of Yutaka
Ohtake. Models are courtesy of the Stanford 3D Scanning Reposi-
tory and the Volvis repository of GRIS, University of Tuibingen.

REFERENCES
[1] J. Bloomenthal and B. Wyvill, editors. Introduction to Implicit Sur-

faces. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1997.

[2] M. Botsch, A. Homung, M. Zwicker, and L. Kobbelt. High-quality
surface splatting on today's gpus. In Point-Based Graphics, pages
17-24, 2005.

[3] M. Botsch, M. Spemat, and L. Kobbelt. Phong splatting. In Proceed-
ings Symposium on Point Based Graphics, pages 25-32, 2004.

[4] N. A. Carr, J. D. Hall, and J. C. Hart. The ray engine. In Graphics
hardware, pages 37-46, 2002.

[5] H. Edelsbrunner. Deformable smooth surface design. Discrete &
Computational Geometry, 21(1):87-115, 1999.

[6] T. Foley and J. Sugerman. Kd-tree acceleration structures for a gpu
raytracer. In Graphics hardware, pages 15-22, 2005.

[7] S. Gumhold. Splatting illuminated ellipsoids with depth correction.
In Workshop on Vision, Modeling and Visualization, pages 245-252,
2003.

[8] K. Hormann and M. Tarini. A quadrilateral rendering primitive.
In T. Akenine-Moller and M. McCool, editors, Graphics Hardware,
pages 7-14, Grenoble, France, Aug. 2004.

[9] T. Klein and T. Ertl. Illustrating Magnetic Field Lines using a Discrete
Particle Model. In Workshop on Vision, Modelling, and Visualization,
pages 387-394, 2004.

[10] J. Krueger and R. Westermann. Acceleration techniques for gpu-based
volume rendering. In Proceedings IEEE Visualization, page 38, 2003.

[11] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-
level partition of unity implicits. ACM Trans. Graph., 22(3):463-470,
2003.

[12] Y. Ohtake, A. G. Belyaev, and M. Alexa. Sparse low-degree implicits.
In Symposium on Geometry Processing, pages 149-158, 2005.

[13] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape modeling
with point-sampled geometry. ACM Trans. Graph., 22(3):641-650,
2003.

[14] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray tracing on
programmable graphics hardware. In ACM Transactions on Graphics
21, pages 703-712, 2002.

[15] G. Reina and T. Ertl. Hardware-Accelerated Glyphs for Mono- and
Dipoles in Molecular Dynamics Visualization. In K. W. Brodlie and
D. J. Duke and K. I. Joy, editor, Proceedings ofEUROGRAPHICS -

IEEE VGTC Symposium on Visualization, pages 177-182, 2005.
[16] C. Rossl, F. Zeilfelder, G. Nurmberger, and H.-P. Seidel. Reconstruc-

tion of volume data with quadratic super splines. IEEE Transactions
on Visualization and Computer Graphics, 10(4):397-409, 2004.

[17] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point ren-
dering system for large meshes. In Proceedings ofACM SIGGRAPH
2000, pages 343-352, July 2000.

[18] C. Sigg, T. Weyrich, M. Botsch, and M. Gross. Gpu-based ray-casting
of quadratic surfaces. In Eurographics Symposium on Point-Based
Graphics, 2006.

[19] C. Stoll, S. Gumhold, and H.-P. Seidel. Visualization with stylized
line primitives. In IEEE Visualization, pages 695-702, 2005.

[20] R. Toledo and B. Levy. Extending the graphic pipeline with new gpu-
accelerated primitives. Technical report, INRIA, 2004.

[21] A. Wood, B. McCane, and S. King. Ray tracing arbitrary objects on
the gpu. In Image and Vision Computing, pages 327-332, 2004.

149

-

Figure 1: Dragon SLIM model rendered with our system with dif-
ferent shaders applied at roughly 40 fps. From left to right: NPR
shading, Reflection mapping, Phong Shading.

Figure 10: Visualization of the iso-surfaces extracted from the
Fuel and Marschner-Lobb volume datasets with (16).

Figure 11: SLIM renderings of the Stanford Lucy and a scanned statue with
140k respectively 180k quadric primitives.

150

