BSP Shapes

Carsten Stoll Hans-Peter Seidel
Max Planck Institut fur Informatik
cstoll,hpseidel @mpi-sb.mpg.de

Abstract

We discuss a shape representation based on a set of dis-
connected (planar) polygons. The polygons are computed
by creating a BSP that contains approximately linear sur-
face patches in each cell. This is achieved by employing two
heuristics for finding appropriate split planes in each cell.
Leaf nodes in the BSP tree represent either polygonal sur-
face approximations or empty (clip) cells rather than split
planes. We show that the resulting set of disconnected prim-
itives typically leads to a better two-sided Hausdorff error
for a given number of primitives than meshes. The BSP
cells can be coded with few bits and, consequently, the tree
is a compact shape representation. The special properties
of BSPs are very useful in applications that need to perform
spatial queries on the primitives, such as for occlusion and
view frustum culling, and proximity or collision tests.

1 Introduction

Shapes are represented in computer graphics mostly by
collections of primitives. Typically, primitives are con-
nected, yielding at least a C° approximation of the surface.
Lately, surface representations based on disconnected prim-
itives are becoming more and more popular.

On one side of the spectrum of potential primitives,
points are used because they naturally result from most ac-
quisition systems (see, e.g., [13]) . By connecting a surface
to the set of points [12, 1, 5] points can also be used for
modeling shapes [21].

On the other side of the spectrum, polynomial patches
are used as individual surface approximations [2], which
could be later blended to form a continuous surface [16, 17].
Surfaces have also been described by mixtures of these
ideas, e.g. associating higher order information to point
primitives [18, 6].

Our main goal here is to provide an accurate surface ap-
proximation consisting of individual surface patches. As
was noted by Wu & Kobbelt [20], this type of representation
could be viewed as C~! continuous across patch boundaries
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and, as usual, smaller degree of continuity corresponds to
more degrees of freedom and, consequently, more accurate
approximations for a given primitive count. In particular,
we show that a set of linear surface patches (i.e. planar poly-
gons) can approximate a given surface with smaller sym-
metric Hausdorff error than connected linear pieces. At the
same time, we generate and represent these patches using
binary space partitions. The linear patches are space parti-
tions as well. This approach combines an accurate surface
approximation with a spatial data structure resulting in an
interesting new shape representation.

Most shape approximation approaches only optimize
one sided approximation errors, i.e. the distance of each
point on the surface being approximated to the closest point
on the approximation. A cardinal example is the reconstruc-
tion of a surface from points, where mostly the distance of
the input points to the reconstructed surface is optimized;
yet, parts of the reconstructed surface might be arbitrarily
far away from the point set.

More precisely, given a surface S to be approximated
by a set of patches P. Typically, the approximation error
is computed as the one-sided distance from points on the
surface to points on the patches

d(S,P) = sup inf [|s — 1
(S,P) :gg;gp\\s p| (1)

as each patch is computed to minimize the distance of the
surface to the patch. However, the Hausdorff error takes
into account also any point on one of the patches in P and
their distance to the surface S:

h(S,P) = max (d(S,P), d(P,S)) (2)

In practice, the error is computed by sampling both sets,
computing the closest point in the other set for each sam-
ple, and taking the maximum distance over all samples (for
meshes see [7]). While sampling introduces an additional
error, this error is bounded by the sampling resolution, i.e.
a given error can be easily bounded by asking that the sam-
pling resolution plus measured distances satisfy the bound.

As we will show, minimizing only one-sided distances
could lead to bad approximation results. In this context,



Figure 1. Calculating the error for sample
points whose projection lies outside of the
cell to conservativeley bound the distance.

it is interesting to mention a recent and very successful
method for computing optimized piecewise linear approx-
imations using variational techniques [9]. While this ap-
proach achieves very good quality approximations mini-
mizing a one-sided error, according to the authors [3], also
bounding the error in the other direction is an important yet
open problem. Note that this is also the reason why it is hard
to compare these different results: because it is unclear how
to generate shape approximations with bounded symmetric
Hausdorff error using variational techniques.

For construction of the linear pieces we follow along the
lines of Ohtake et al. [16] and derive surface patches by sub-
dividing space. However, rather than using a regular spatial
subdivision, we divide cells by split planes, which are cho-
sen to reduce either the distance of the shape to the patches
or vice versa. The resulting binary space partition (BSP)
consist of cells that contain approximately planar pieces of
the surface, or no surface at all. An additional split plane
in non-empty cells is used to represent the planar patch and
the boundary of this patch results from clipping the plane
against the cell. Empty cells are created to clip away empty
space and, in that way, minimize the patch size to reduce
the distance from patches to the surface. The construction
of the BSP is described in detail in Section 2.

It is not new to use BSP trees to describe the faces of a
surface. This concept has been used to facilitate set opera-
tions [14] on polyhedra or, more generally, do solid geom-
etry on polyhedra [15]. BSP trees have also been used to
approximate a distance field to the surface [19]. We discuss
the similarities with these approaches in Section 2 as well.

Apparently, the shape approximation consists entirely of
a BSP tree, which is why we call this representation BSP
shapes. The only additional information needed is to distin-
guish between planar patches and clip planes among the leaf
nodes in this tree. This means the shape can be stored by a
tree traversal; for each plane we only need to store a normal
and an offset. For moderate quantization of this information
we achieve good bit rates for error-bounded shape represen-
tation. In an application, the tree can be queried while be-

ing traversed, e.g., for sending only the set of patches to the
graphics card that are contained in the view frustum. Cod-
ing and traversals of the tree, and resulting storage sizes and
polygon counts are discussed in Section 3.

2 Construction of the BSP shape

The main strategy for generating the BSP is to mini-
mize both one-sided distances by choosing appropriate split
planes. Let S be the shape to be approximated by a set of
linear patches P. Linear patches are defined as the inter-
section of a plane and a BSP cell. During the first phase of
the process, mostly d(S, P) is minimized by splitting cells
so that a linear patch approximates the surface points in that
cell well. In a second phase, the distance d(P, S) of patches
to surface points is minimized, by clipping away parts of the
polygonal patches that are far away from any surface point.

Both splitting phases are controlled by bounds es_,» and
ep_.s on the maximum distances over all cells. In the fol-
lowing we first explain the basic computations per cell, then
how to split cells in the first phase based on two tests and
two heuristics, and finally how to clip cells.

2.1 Per cell computations

Let a cell C be defined as the intersection of half spaces
n;x — d; > 0. The cell contains a part of the surface s C
S. This part is approximated by a planar patch pc € P.
The planar patch is defined as the intersection of a plane
nex — de = 0,||ne|| = 1 with the cell.

We approximate the distance d(s¢,pc) by computing
distances of samples {q;} € s¢ to the polygon. Each sam-
ple is projected to the plane yielding q; = q; —nc(qine —
d¢). This projection is checked against the half spaces, i.e.
the sign of niq9 — d; is evaluated. If any of the signs are
negative, a maximum distance between the projection and
the interior of the polygon is approximated as (see also Fig-
ure 1)

max(0, —}n; + d;)

. 3)

d(¢’, pc) = max
(4j, pc) = m o ?

which evaluates to zero if the projection q;. is inside the
polygon. The distance of q; to pc is then conservatively
approximated as

d(a;,pc) = nca; — dc| + d(q;, po) “)
and eventually the surface to patch distance is set to

d(sc,pc) = m?Xd(qj,pc), {a;} €s¢. (9

The other direction is also computed based on distances
to a sample set {q;}. This sample set is projected on the



patch leading to a set {g}}. Strictly speaking, one would
have to compute the convex hull of this set and find the
maximum distance between the line segments of this convex
hull and the patch boundary. We approximate this distance
by sampling a set of directions; this has the additional ad-
vantage that the directions can be later used to define clip
planes. Let directions ny be uniformly sampled from a cir-
cle perpendicular to n¢ (i.e. all normals are parallel to pc)
and let {p;} be the vertices of the polygon pc. Then the
separation between the points {qj } and the vertices {p; } in
direction ny. is

dn, (pc,sc) = miin n,p; — mjin n;q; (6)
and the largest such directional distance is
d(pc, sc) = maxdu, (pc, sc) @)

Ideally, a plane (n¢,d¢) should be computed to mini-
mize the above mentioned distances. However, we find that
this is too expensive and not really necessary in practice.
Based on the sampled points, the normals n¢ is usually
computed as the direction of smallest co-variance of {g;},
and d¢ chosen that the plane contains the centroid of the
samples.

2.2 Splitting to bound d(S,P)

The basic idea is to minimize the co-variance of surface
patches in the cell. The co-variance is connected to curva-
tures and also intuitively, flat patches result from splitting
along areas of high curvature. We compute a suitable plane
for splitting the surface in a cell into two surfaces with small
total curvatures using the following
Primary Heuristic: The direction of largest co-variance of
surface normals defines the normal of the split plane.

This choice is intuitive and computationally feasible:
along the direction of largest normal curvature the co-
variation of normal vectors is expected to be large. Split-
ting orthogonal to this direction minimizes the variation in
normals and, thus, in total curvature. Computation only in-
volves solving an eigen-problem of the 3 x 3 co-variance
matrix of a set of sampled normals.

We have found this heuristic to perform better in many
cases than those proposed in [19]. However, it fails in two
cases: First, (approximately) cylindrical surfaces are always
cut along one direction, leading to cells with very high as-
pect ratios and the known associated numerical problems.
Second, cells covering unconnected parts of the surface
need special treatment, which cannot be concluded from the
Gauss image.

We have designed two tests to check if cells are suitable
for the primary heuristic.

Figure 2. Comparing accurate piecewise lin-

ear approximation of surfaces. The Haus-
dorff errors to the original surfaces are small
in all cases (ca. 0.002).

1. To approximate the aspect ratio of a possible planar
approximation to the surface we compute the ratio of
the second largest and largest eigenvalue of the sur-
face inside the cell. This involves taking samples of
the surface, computing the eingenvalues Aj, Ag, A3 of
their co-variance matrix, and then checking if A3/\a
is too large. In practice, if the ratio exceeds 8 we con-
clude the cell is too elongated for proceeding with the
primary heuristic.

2. To check if the cell contains more than one connected
component, we compare the area of s¢ with the area
of a potential planar patch pc. The area A(s¢) is ap-
proximated based on a sampling: Let the average dis-
tance among neighboring samples be p (known from
the sampling procedure or approximated from nearest
neighbors) then

2
p

A(sc) = T —= 8

(sc) EJ: ( ﬁ) ()

If A(s¢) < 3A(pc) we conclude that the cell contains

more than one connected component and should not be
split based on the primary heuristic

In both cases we resort to a more conservative
Secondary Heuristic: The direction of largest co-variance
of the surface defines the normal of the split plane.

This heuristic simply minimizes the co-variance of the
surface patches. It is known to fail in many cases (see also
[19]), however, these cases are usually covered by the pri-
mary heuristic. In the two cases we make use of it, it gener-
ates splits exactly where they are reasonable: Either along
the longest axis, or separating disconnected components.

In our implementation, we always start with computing
both eigensystems for each cell. This yields all the infor-
mation necessary for defining the planar patch and applying
the heuristics. Cells are split as long as d(s¢, po) < €s—p
and if they appear to contain more than one component (i.e.
if they fail the second test as described above). While we
cannot prove convergence for a continuous surface, the pro-
cedure necessarily converges for any fixed non-degenerate



sampling. Once converged, the overall one-sided error
d(S,P) is bounded by es_.p.

2.3 Clipping to bound d(P,S)

Once the distance from the surface to the patches is
bounded, we further split cells to minimize the distance of
patches to the surface. In our experience, in contrast to [19],
this is necessary for many cells if a symmetric error is re-
quired. Our approach is related to the one described in [19]:
remember that the distance d(p¢, s¢) is computed based on
a discrete set of normals n;, as the maximum of directional
distances dn, (pc, sc) (see Section 2.1). We simply use 7
defining d(pc, sc), i.e. the direction that leads to largest
separation of one the vertices and the projected points on the
polygon. The offset for this plane is so chosen that one of
the two cells contains all points and the other one is empty;
this effectively clips the polygon.

This procedure effectively decreases d(p¢, s¢); the pro-
cess terminates if d(pc,sc) < ep—s for all non-empty
cells.

2.4 Resulting shapes

We have applied the procedure described above to gen-
erate surface approximations for various models and error
bounds. In our experiments we started from existing sam-
plings (i.e. scanned data), rather than sampling a continu-
ous surface, which would have been possible as well. Fig-
ures 2 and 3 show several examples. In particular we have
compared meshes simplified based on quadric error metrics
[11]: Meshes have been simplified to a given number of
faces. The Hausdorff distance of the simplified meshes to
the original vertex set has been computed using Metro [7].
Then we have generated BSP shapes with similar Hausdorff
distance. The results are displayed in Figures 2 and 3, where
meshes and BSP shapes in a column have similar Hausdorff
distances (but different number of primitives).

Note that we have also checked the results of Simplifi-
cation Envelopes [8], as this method explicitly bounds the
Hausdorff error. Yet, the number of faces this approach gen-
erates is generally much larger than QSlim, which is why
we have chosen the comparison described above.

Figure 3 compares the number of planar patches to the
number of faces in the mesh relative to the Hausdorff dis-
tance. It also shows the number of triangles resulting from
triangulating the faces. For coarse approximations (Fig-
ure 3, BSP shapes have significantly less faces (and also
less triangles). This advantage is decreasing as the error
bounds get tighter and the number of faces increase (Fig-
ure 2. Note that in applications where a BSP over the poly-
hedral shape is needed the number of faces indeed describes
the complexity of the data structure and, therefore, is a prac-

tical predictor for the efficiency of spatial queries. For pure
rendering purposes, of course, the number triangles is im-
portant.

This comparison is based on floating precision numbers
and the images in Figures 2 and 3 show the faces flat shaded.
In the following, we discuss how to store the BSP shape
more efficiently using quantization and how to render the
BSP shape in more visually pleasing manner.

3 Coding the BSP shape

The main observation for efficiently coding the BSP tree
is that the precise orientation of planes for most cells is not
that crucial. Consequently, normals and offsets can be quan-
tized without too much effect on the resulting representa-
tion. Furthermore, quantization can be incorporated into
the construction so that the resulting shape still satisfies the
same error bounds, only with slightly more cells.

3.1 Coding cells

Normals are represented by a quantization scheme simi-
lar to [10]. The unit sphere is subdivided into 8 quadrants,
which are again subdivided into 6 triangular sextants. Each
of the sextants is now quantized by a regular grid in angle
space. While this encoding is not perfect (ambigous codes
exist for a few normals) it still delivers good results.

It might seem advantageous to code normals relative to
the normals of prior split planes. However, we have found
that normals in the BSP tree are almost randomly distributed
so that there is no benefit in differential coding.

However, inner nodes can be coded using less bits, be-
cause their influence on the approximation is small. An
additional bit can be saved because the orientation of split
planes is irrelevant. For the leaf nodes, planes representing
patches should be coded rather accurately, while clip planes
can be coded based on a regular subdivision of a circle.

Note that all cells in the BSP are closed, because we in-
tersect the BSP with the bounding box of the object, which
is explicitly stored. Further, each splitting plane passes
through the cell it divides. For these reasons, we encode
the offset relative to the centroid of vertices of the cell and
the magnitude relative to the size of the cell.

For the magnitude we compute the distances of cell ver-
tices to the centroid along normal direction of the plane and
use the largest distance to define 2* regular intervals. Stor-
ing a quantized distance value then requires k + 1 bits.

The tree can be coded by traversing it in any order and
storing the normals and offsets. In addition, leaf nodes have
to be flagged (because the tree is not balanced) and these
leaf nodes have to be distinguished into empty (resulting
from clipping) and non-empty nodes. This requires a bit to
distinguish inner nodes from leaves, and then an additional
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Figure 3. Left: Comparison of coarse piecewise linear approximation of surfaces. The Hausdorff
errors to the original surface are similar for each column (ca. 0.05, 0.02, 0.005, 0.01), but the number
of faces and triangles for disconnected pieces are smaller than for meshes. Right: A graph showing
that the number of primitives for the same Hausdorff error is generally smaller for BSP shape than
for meshes while the number of triangles is near equal.

bit for the leaf nodes to distinguish among surface patches
and clip planes.

3.2 Resulting BSP shape codes

Aggressive quantization leads to small codes for each
cell, but larger deviations of the planes from their optimal
orientation and position, thus, larger errors and, eventually,
more cells. More accurate representation requires more bits
per cell but leads to overall fewer cell. So, in general, an er-
ror bound can be satisfied with a wide range of quantization
settings, just leading to different BSP shapes (with possi-
bly different code sizes). There is, of course, a limit to the
quantization relative to the desired accuracy, i.e. a small er-
ror cannot be achieved with only 8 directions for the planar
patches.

It has turned out to be difficult to deduce a general rule
for choosing the quantization levels of the different types of
cells. We distinguish the number of bits for interior nodes,
planar patches and clip planes. For each of the three types
the number of bits for the direction of the normal and the
offset can be chosen.

Based on experiments we generated a sequence of quan-
tizations with bit ratios roughly 3:4:2 for interior nodes, pla-
nar patches, and clip planes, and fixed error of 1% of the
bounding box diagonal. As expected, neither too few nor
too many bits per cell lead to overall good code sizes, how-
ever, few bits lead to already quite good accuracy, few cells,
and good code sizes. Figure 4 shows the resulting code sizes
relative to the bits per cell.

When comparing the resulting code sizes to compressed
meshes with similar Hausdorff error, BSP shapes usually
require slightly more data: In our example of 1% Hausdorff
error, the corresponding mesh can be compressed to 1.5
KByte using state of the art mesh codecs (e.g. [4]), while
the minimum tree size of BSP shapes among the ones we
generated is 2.3 KByte. This code size is achieved without

entropy coding, though we have found that standard com-
pression tools have little effect on the code size. Only for
very coarse approximations, we find bit rates that are similar
to those of meshes. The spatial relationship among neigh-
boring faces available in a mesh can be used for predictive
coding of the geometry — an information that is missing in
BSP shapes.

4 Conclusions

BSP shapes are a surface approximation combining a
useful spatial data structure with accurate Hausdorff error
bounded approximation. The construction of the represen-
tation is fast and depends mostly on the required precision.
The resulting number of patches necessary for the represen-
tation is smaller than the number of faces in mesh repre-
sentation with similar Hausdorff error in our experiments.
The BSP tree can be stored efficiently using only quantiza-
tion without any additional coding techniques. This means,
the small code can be directly used for further process-
ing without the need to perform any decompression steps.
Code sizes are slightly larger than compressed meshes, but
smaller than a mesh plus BSP constructed from the mesh
faces.

We find that BSP shapes open the door to an interest-
ing new area of surface representation techniques. Many
things have to be further explored, though. Most obvious
is the lack of considering accuracy in the normals, which
adversely affects the visual appearance when using shading
models. This effect is amplified when normal directions of
patches are quantized aggresively . Controlling not only the
Hausdorff error but also the error in normal approximation
might remedy the problem.

We have already experimented with higher order approx-
imations in the leaf nodes. However, when only the Haus-
dorff error is considered they yield similar results: fewer
leaf cells are needed but they require more coefficients.
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Figure 4. Shape approximations with an equal Hausdorff error of 1% pf the bounding box diagonal
and succesively smaller overall code sizes. From left to right : No quantization, 17kByte. 15:20:13
bits, 3kByte. 14:18:12 bits, 2.5kBye. 13:16:10 bits, 2.35kBye. Right : Plot of the error compared
to the average bits per cell. Using too few bits per cell requires extra cells to compensate for the

quantization artifacts and leads to larger code sizes.

They could solve the appearance problem, but they are also
more costly in rendering.

More fundamentally, while disconnected representations
have the promise of delivering more accurate representa-
tions for the same number of primitives, it is not yet clear
how they should be generated and exploited.
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