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Abstract

We present a novel approach to real-time shape editing that produces phys-
ically plausible deformations using an efficient and easy-to-implement vol-
umetric approach. Our algorithm alternates between a linear tetrahedral
Laplacian deformation step and a differential update in which rotational
transformations are approximated. By means of this iterative process we
can achieve non-linear deformation results while having to solve only linear
equation systems. The differential update step relies on estimating the ro-
tational component of the deformation relative to the rest pose. This makes
the method very stable as the shape can be reverted to its rest pose even after
extreme deformations. Only a few point handles or area handles imposing
an orientation are needed to achieve high quality deformations, which makes
the approach intuitive to use. We show that our technique is well suited for
interactive shape manipulation and also provides an elegant way to animate
models with captured motion data.

Keywords

Interactive shape editing, Tetrahedral meshes



Contents

1 Introduction 2

1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technique 6

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Tetrahedral Laplacian formulation . . . . . . . . . . . . . . . . 6
2.3 Tetrahedral deformation technique . . . . . . . . . . . . . . . 7

2.3.1 Deformation setup . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Iterative mesh deformation . . . . . . . . . . . . . . . . 9

2.4 Deforming high resolution meshes . . . . . . . . . . . . . . . . 13

3 Results 15

3.1 Model editing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Animation using motion capture data . . . . . . . . . . . . . . 15
3.3 Geometric properties . . . . . . . . . . . . . . . . . . . . . . . 17

4 Conclusion 20

1



1 Introduction

In recent years, interactive shape deformation and editing has been a very
active field of research. The goal is the development of algorithms that enable
shape deformation in an intuitive and, more importantly, natural looking way
under a given set of constraints. This usually means that the deformation of
the given shape must be calculated in a physically plausible manner, i.e. it
must satisfy the expectations the user has due to his experience with deform-
ing objects in the real world. Correct physical simulation requires setting up
and minimizing complex non-linear energies, which is computationally ex-
pensive and thus often only reasonable in non-interactive applications. Since
users will usually not be happy with the first deformation they produce and
will iteratively modify the deformation constraints until they are satisfied
with the results, offline methods are not feasible for shape editing. To enable
immediate feedback to the user and reach interactive editing performance it
is necessary to use simpler and easy-to-compute deformation techniques that
still behave plausibly.

Lately, a popular way to address this issue has been to employ simplified
thin-plate and thin-shell representations which effectively model a shape as
hollow object. Deformations are computed by representing an object as a
triangle mesh and minimizing the stretching and bending energies on its
surface under a given set of constraints. Many recent papers suggest to
use the linearized discrete surface Laplacian as a base for their deformation
techniques [29, 19, 34, 18, 35] or to directly minimize the non-linear energies
as efficiently as possible [6, 25, 13].

While volumetric shape representations such as tetrahedral meshes or
similar structures have been widely used in physical simulation [21], there are
only a few shape editing methods that rely on this solid object representation
[36, 6]. The benefit of a volumetric deformation framework is that it better
prevents unintuitive shape transformations, such as local self-intersections of
opposing surfaces. Furthermore, it enables distance preservation not only
on an object’s surface, but also throughout its interior, which makes the
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Figure 1.1: Example of a deformation of a raptor created with our method.
From left to right: Reduced tetrahedral model with handles in red, original
high resolution input model, deformed input model.

deformations resistant to changes in volume and cross-sectional areas.
Non-linear approaches can compute large shape deformations in one step.

However, during an interactive editing session the user typically grabs a han-
dle and moves it along a continuous path to its target position. In conse-
quence, if the deformations can be computed quickly, only small changes to
the constraints are necessary at every frame that is rendered.

We capitalize on these observations and propose a novel interactive shape
editing approach that approximates non-linear deformation effects in real-
time by iteratively solving linear problems, Sect. 2.3. Our method relies on
a tetrahedral mesh representation of the input shape that can easily be gen-
erated for triangle-mesh objects. The proposed algorithm is highly robust
and provides immediate visual feedback to the user controlling the defor-
mation. During each pose update step, a first version of the transformed
model is reconstructed by means of a linear tetrahedral Laplacian deforma-
tion. Since this first step is unable to influence the rotational components of
the tetrahedra, a second step analyzes the output of the Laplacian deforma-
tion and updates the differential coordinates to compensate for the rotational
invariance. Two optional steps improve the behavior of our method under
rotational constraints given by the user and allow for the specification of rigid
areas on the object.

In case of very large input triangle meshes, we employ decimated tetra-
hedral representations to maintain real-time frame rates. The detailed mesh
in its target pose can be quickly generated from the deformed tetrahedral
mesh by means of an efficient and stable free-form deformation approach,
Sect. 2.4.

As shown in Sect. 3, our algorithm enables even unexperienced users
to quickly generate plausible edited shapes. We also show on a variety of
examples that the flexibility in constraint placement inside and outside the
object makes the method well-suited for creating realistic mesh animations
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from captured real-world motion data.

1.1 Related work

Shape editing is an active field of research in computer graphics, and con-
sequently a variety of different strategies were proposed to attack the prob-
lem. Early methods like free-form deformation [24] enable high-quality shape
modeling, but typically fail to reproduce physically plausible transformation
results if only a handful of manipulation constraints are used.

Physical plausibility, however, is a highly-desirable property, as it leads
to a deformation behavior of the edited objects that a user is familiar with
from real-world experience. Therefore, it has recently become very popular
to model deformation by minimizing bending and stretching energies, which
leads to thin-shell and thin-plate representations. For the sake of efficiency
these non-linear energies are often linearized, for example as linear Laplacian
or Poisson systems. A comprehensive survey of linear Laplacian techniques
can be found in [28]. Most of these methods suffer from the problem that it
is not possible to couple translations and rotations in a linear way. There-
fore, most methods which use translational constraints exhibit insensitivity
to rotations [29, 19], whereas methods relying on rotational constraints are
insensitive to translations [34, 18, 35]. A method for deformation with vary-
ing stiffness has been propsed by [23]. Several methods have been proposed
which try to remove this linear dependency by using multi-step approaches,
like multi-scale decomposition [16, 4, 7], or skeleton based techniques [33].

Other approaches propose to solve the computationally expensive non-
linear equations directly. By this means the above insensitivity problems
can be prevented, but the price to be paid is often that interactive deforma-
tion is only feasible on models of reduced complexity. As an example, [13]
use a subspace solver to reduce the dimension of the involved optimization
problem. [25] proposes an non-linear differential coordinate setup, while [6]
minimizes bending and stretching energies using a coupled shell of prisms.
Instead of trying to solve the non-linear equations directly, we approximate
non-linear deformation behavior in real-time by solving a sequence of linear
equation systems.

Our shape editing approach also targets similar applications like previous
work on animation transfer between meshes [30], as well as the algorithm to
interpolate target shape poses from an example database presented in [10].

All of the linear methods that we mentioned so far rely on a surface mesh
representation, i.e. they work on a triangulated manifold. This kind of rep-
resentation may lead to local self intersections and shrinking effects in an
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edited object, as opposing surfaces are not constrained to retain their dis-
tance. To prevent such artifacts, we design our method around a volumetric
scene representation. Our tetrahedral mesh representation is similar to the
one proposed by [36] who suggest to use a volumetric graph structure as
basis for a linear Laplacian deformation. While their method exhibits much
better volume preservation properties than most surface-based algorithms, it
suffers from the same translational/rotational insensitivity. In contrast, our
algorithm handles rotations and translations faithfully. Furthermore, our
unified tetrahedral Laplacian setting is a lot less complex than their hybrid
setting which uses a triangle-based Laplacian for the surface and a graph-
based quadratic programming formulation for computing interior weights.

A linear approach to deformation with guaranteed volume-preservation
was proposed in [32]. Although their vector-field-based framework enables
the definition of advanced implicit deformation tools, it is not well-suited for
handle-based shape modification in the manner necessary in our context.

Volumetric representations have been widely-used in physics-based sim-
ulation approaches. However, their focus lies on accurate reproduction of
the dynamic behavior of objects with known physical material parameters
under the influence of forces or moments. Mueller et al. [21] use a rotational
update computation similar to ours to mimic non-linear deformations dur-
ing simulation of elastic objects. In contrast, we don’t require a full-blown
physics-simulation framework, and couple a clever rotation update step with
a fast volumetric Laplacian deformation to obtain plausible edited shapes at
real-time frame rates.

Our approach is also related to the work by Alexa et al. [1] and Igarashi
et al. [14], who try to interpolate respectively edit two-dimensional shapes
in such a way that they behave locally as rigid as possible. Both algorithms
optimize local elements in such a way that transformations induced by their
deformations are as close as possible to pure rotations. Our method achieves
a similar behavior for 3D tetrahedral elements.

The iterative differential update technique is related to [2], who itera-
tively rescale the deformed geometries differential coordinate to its original
length, which may lead to accumulating tangential drift if applied to the
original geometry, making it necessary to work on the dual mesh to avoid
these problems. Our iterative update process avoids this by working on the
tetrahedra and rebuilding differential coordinates similar to gradient based
editing methods, making it stable even under extreme conditions.
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2 Technique

2.1 Overview

The input to our algorithm is a (usually high resolution) triangle mesh to
be deformed, denoted by Minput = (Vinput,Tinput), which consists of a set of
vertices Vinput and triangles Tinput. From this we derive a tetrahedral mesh
T = (Vtet,Ttet) with vertices Vtet and tetrahedra Ttet, which is created by
performing a quadric error decimation on Minput [11] and then building a
face-constrained Delaunay tetrahedralization [27].

The first step of our pipeline after loading the meshes is the precalculation
of a coefficient matrix B containing linear combination coefficients of the
vertices of Minput with respect to the tetrahedral mesh. Subsequently, the
user specifies deformation handles and rigid regions on T .

Our approach augments tetrahedral Laplacian editing (Sect. 2.2) to plau-
sibly approximate non-linear deformation behavior by solving only linear
equation systems. The core of our algorithm is an iteration of purely lin-
ear deformation, rotation estimation and interpolation, and differential co-
ordinate update, Sect. 2.3. This loop runs permanently in the background
enabling real-time visual feedback to the user manipulating the constraints.
Once the user is satisfied with the deformation of the tetrahedral mesh, we
reconstruct Minput in the final pose (see Sect. 2.4) using the coefficients in
B, and thereby yield a natural looking deformation of our original input.

2.2 Tetrahedral Laplacian formulation

Our deformation technique is based on Laplacian editing. However, unlike
most of the related papers we are not working on a triangulated manifold
but rather build our system based on a tetrahedral mesh volume. Because of
this we need to set up the Laplacian equations in a slightly different manner.

Given a tetrahedral mesh T = (Vtet,Ttet) with n vertices Vtet = {v1 . . .vn}
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and m tetrahedrons Ttet = {t1 . . . tm} we want to build a linear Laplacian
system and find the mesh’s differential coordinates δ as

Lx = δ . (2.1)

For deformation, this system is to be solved under the influence of a set
of given constraints. The matrix L is the discrete Laplace operator on our
tetrahedral mesh, and x are the coordinates of the mesh’s vertices. The
Laplace operator is defined as the divergence of the gradient of a scalar field.
In our setting, it can be constructed by calculating a gradient operator matrix
Gj for each tetrahedron tj which contains the gradients of the tetrahedron’s
shape functions φi

Gj = (5φ1, . . . ,5φ4) (2.2)

=





(p1 − p4)
T

(p2 − p4)
T

(p3 − p4)
T





−1 



1 0 0 −1
0 1 0 −1
0 0 1 −1



 (2.3)

Here pi are the four corner vertices of the tetrahedron. The matrices Gj can
be combined into a large 4m × n gradient operator matrix G, which can be
used to construct the Laplacian matrix as

L = GTDG , (2.4)

where D is a 4m× 4m diagonal matrix containing the tetrahedra’s volumes,
and GTD is the discrete divergence operator.

The differential coordinates δ for the initial mesh can now be calculated
explicitly using Eq. (2.1) or, more importantly, based on the tetrahedra’s
gradients as in Poisson surface editing [34] as

δ = GTDg . (2.5)

Here, g is the set of tetrahedron gradients, each being calculated as gj =
Gjpj. More details on the construction of the Laplacian from gradients can
be found in [7].

This construction allows us to apply a separate transformation Tj to each
tetrahedron tj (which, in a sense, ”explodes” the mesh). We can then recon-
struct it in its new target configuration by using the transformed gradients
g′ on the right hand side during calculation of the differential coordinates.

2.3 Tetrahedral deformation technique

Our real-time mesh deformation method operates on a tetrahedral version
T of the input model. The deformation approach itself comprises of several
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Figure 2.1: Overview of our tetrahedral mesh deformation pipeline - (a)
shows the input model with handles in red and green and a rigid section
marked in blue. (b),(c) and (d) show the output of the individual iterative
processing steps, namely linear Laplacian deformation (b), rotation extrac-
tion/interpolation (c), and rigid section handling (d). (e) shows the final
deformed model at the end of the user interaction.

algorithmic steps that are permanently iterated in the background while the
user interacts with the model, Fig. 2.1. The individual steps of the method
are as follows (processing steps that are optional are printed in italics):

• Deformation setup, load T , selection of constrained and rigid areas

• Iterative mesh deformation

– Linear Laplacian deformation

– Rotation extraction

– Rotation interpolation

– Rigid region handling

– Differential coordinate update

In the following, we explain the individual steps in more detail.

2.3.1 Deformation setup

The input to our method is a tetrahedralized version T of the input triangle
mesh. Triangle meshes of moderate size can be tetrahedralized such that
the surface triangulation is preserved and thus a final pose transfer is not
required. To interactively deform meshes of very high resolution, we apply
a quadric error mesh simplification method to Minput and tetrahedralize
the low resolution mesh afterwards. Unlike the algorithm proposed in [36],
which relies on the creation of a regular grid structure inside the object, our
approach produces plausible deformation even if T does not contain internal
vertices and therefore contains very elongated tetrahedra. Imposing bounds
on tetrahedral shape quality results in a more complex tessellation but does
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not lead to noticeable deformation improvements. Thus, a coarse tessellation
is sufficient and inner vertices may only need to be inserted for topological
reasons, which significantly reduces the computational complexity.

After all input data is properly set up, the user defines control handles
by marking parts of T . On the one hand, handles can be complete regions of
the tetrahedral mesh. In this case, rotational constraints are automatically
imposed as the orientation for the handle is fixed by the user. On the other
hand, handles can be single vertices, which leaves the orientation of the
surrounding tetrahedra free to be determined by the deformation method.
Please note that it is also possible to define handles at arbitrary positions
inside the object. This can be achieved by representing the handle point as a
linear combination of the vertices of T as presented in Sect. 2.4. The latter
method even allows us to add handles outside of the object but close to the
surface. Using this we can, for instance, directly use raw marker positions
from optical motion capture data as constraints.

Once all handles are set, the user can optionally specify rigid regions.
In this step, sets of tetrahedra that ought to maintain a constant relative
orientation can be marked. Conveniently, our system does not impose any
constraints on the size, shape or topology of rigid regions. It is even possible
to mark disconnected parts as belonging to the same rigid part. This allows
us to quickly specify a kind of pseudo-skeleton without having to define joints
or a bone hierarchy.

2.3.2 Iterative mesh deformation

Once the deformation setup is completed, user-guided mesh deformation can
commence. While the user interacts with the handles a new deformed mesh
is calculated for every frame rendered, i.e. the deformation algorithm con-
tinuously iterates in the background.

The first step in each iteration is a basic linear Laplacian deformation.
Since this linear step does not properly handle rotations, we perform an anal-
ysis of the linear results to extract for each tetrahedron j an estimate of its ro-
tational transformation Rj, Sect. 2.3.2. If necessary, user-defined constraint
rotations are interpolated across the mesh and added up to the previously
extracted per-tetrahedron rotations Rj. Subsequently, we make sure that all
rigid mesh regions rotate in the same way by assigning to each rigid group of
tetrahedrons its averaged rotational transformation component. Finally, the
resulting Rj are used to construct an updated set of differential coordinates.

By iterating these steps, we achieve natural and plausible looking defor-
mations of our object at real-time frame rates. In the following, we detail
the individual deformation steps, commencing with the three ones that have
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to be performed in any case, and ending with the two ones that are only
required if either rotational or rigidity constraints were specified.

Linear Laplacian deformation

The linear deformation follows the setting outlined in Sect. 2.2. The matrix
L of Eq. (2.1) can be constructed following Eq. (2.4). Accordingly, the
differential coordinates can be computed based on Eq. (2.5).

Handles can be factorized into the matrix L by eliminating the corre-
sponding row and column in the matrix and incorporating the values into
the right hand side δ. The deformation can then be generated by solving the
reduced Eq. (2.1).

The resulting deformed mesh T ′ only looks natural for very small defor-
mations (see Fig. 2.1), as the basic Laplacian setting does not induce any kind
of rotation or scaling. The deformed mesh T ′ can be computed efficiently
with the help of a Cholesky factorization of the left hand side matrix.

Rotation extraction

In the context of our iterative deformation scheme, we can plausibly approx-
imate non-linear transformation components, such as local rotations, in a
purely linear setting. We analyze the output of the linear Laplacian defor-
mation in order to extract for each tetrahedron tj an estimate of a rotational
transformation. These per-tetrahedron rotations are eventually used to up-
date the differential coordinates for the linear deformation.

To put this idea into practice, we compare the deformed mesh T ′ to the
original mesh T in its rest pose. By comparing the positions of the vertices
vi of a single tetrahedron tj in T to their new positions v′

i in T ′, we can
calculate a 3 × 3 transformation matrix Tj as

Tj =





(v1 − v4)
T

(v2 − v4)
T

(v3 − v4)
T





−1 



(v′

1 − v′

4)
T

(v′

2 − v′

4)
T

(v′

3 − v′

4)
T



 (2.6)

such that (vi − v4)Tj = (v′

i − v′

4) for i = 1, . . . , 3.
Matrix Tj only consists of anisotropic scaling (stretching) and shearing

components. As shown by Shoemake et al. [26], Tj can thus be factored into
an othonormal rotation matrix Rj and a non-rotational part Sj,

Tj = RjSj . (2.7)
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Technically, the rotational component can be computed by iteratively aver-
aging Tj with its inverse transpose as

H0 = Tj , Hk+1 =
1

2
(Hk + Hk

−T ) . (2.8)

The decomposition iterates up to a step k after which Hk does not change
anymore, and then sets Rj = Hk. In our experiments it was sufficient to
perform two to three computation steps followed by a normalization of each
matrix row to achieve a decent separation. Note that in our three-dimensional
setting we also have to make sure that Rj does not contain a mirroring
component to keep tetrahedra from inverting. To serve this purpose, we
check the determinant and multiply the matrix by −1 if necessary.

Differential coordinate update

Now that we have calculated rotations Rj for each tetrahedron it is straight-
forward to use them to calculate a new set of differential coordinates. We
apply the rotations to their respective tetrahedra tj from the original mesh
and calculate a new set of transformed tetrahedron gradients gj, from which
the new δ can be calculated using Eq. (2.5). This is similar to the ”explod-
ing” of the mesh in [30].

Rotation interpolation

By iterating the above three steps linear Laplacian deformation, rotation
extraction, and differential coordinate update, we can mimic non-linear be-
havior in our deformations. Repeating them also minimizes the amount of
shear in the results.

While the system adapts very well to translational constraints, rotational
constraints (especially twisting) may require a higher number of iterations
to propagate through the mesh. One important observation is that the limit
of the deformation under rotational constraints is usually very similar to
the deformation that would have been generated by using a Poisson mesh
editing technique where rotations are interpolated between the constraints
(see Fig. 2.3.2). Thus, it is only natural to combine the two methods.

We decided to adapt the approach by Zayer et al. [35], which uses a har-
monic interpolation of quaternions across the mesh, to our purpose. One
major disadvantage of quaternion-based rotation interpolation is its inabil-
ity to properly reproduce rotations by more than 180 degrees. We solve
this problem by interpolating tetrahedron rotations that are relative to the
current estimates Rj instead of absolute rotations with respect to the rest

11



(a) (b)

Figure 2.2: (a) Behavior of our deformation technique when a 360◦ twist is
applied to the green handle. From top to bottom: Original model of a bar;
result after applying the twist without rotation interpolation; deformation
without rotation interpolation converged after several seconds; instantaneous
result with rotation interpolation. (b) Examples of deformations which are
difficult for linear Laplacian methods. Left : A cylinder with deformations
generating by applying a rotation of 135◦ (top), respectively 90◦ and a trans-
lation to the right (bottom). Right : A bumpy plane to which we apply a
pure translation. Note the rotations of the bumps on the plane generated
even though only a translational constraint has been applied.

state. These relative rotations are usually very subtle and can thus be eas-
ily interpolated with the harmonic interpolation scheme. Technically, the
interpolated quaternions are simply added to the current frame’s rotation
matrices Rj before calculating the updated differential coordinates.

An interpolation of rotations is only necessary if the user actually rotates
a handle and if that handle consists of one or more tetrahedra in which all
vertices were selected. In any other case, the rotation of a handle can not be
determined uniquely.

Rigid section handling

Adapting our method to handle rigid parts in the mesh is a straightforward
task. For every rigid set of tetrahedra Trigid ⊆ Ttet we can calculate an
average rotation from the Rl of all the tl ∈ Trigid. Each such tl is then
assigned this fixed average rotation. By this means, we remove the ability
to bend from the set Trigid while the averaging still allows the set to orient
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itself in such a way that the deformation’s shear is minimized, Fig. 2.1. If our
goal is not to generate completely rigid parts but rather to vary the stiffness
of certain parts we can achieve this by scaling the gradients gj and gradient
operator matrices Gj of the respective elements when building the linear
system from Eq. 2.1 and updating the differential coordinates in Sec. 2.3.2.
Increasing the scaling factor increases the relative stiffness to the surrounding
elements and vice versa.

2.4 Deforming high resolution meshes

High-resolution meshes Minput, as generated by lase scanning or similar tech-
niques, cannot be deformed at interactive rates using our method. Thus we
need to work on a lower-resolution tetrahedral mesh version of the original
input mesh, and afterwards transfer the final pose of T to obtain Minput in
the target pose.

A fast and easy-to-implement approach to pose transfer generates for each
vertex vi of Minput a set of barycentric coordinates with respect to the closest
tetrahedron of T in the rest pose. By applying those coordinates to the
deformed tetrahedral mesh, the deformed fine mesh M′

input is reconstructed.
Although this approach is fast it has several drawbacks, the main one being
that the reconstruction is only piecewise linear and thus artefacts like dents
and self intersections may appear in the reconstructed mesh.

Mean value coordinates [15] provide an alternative that circumvents these
problems. Here, a set of coefficients ci = c0

i . . . cm
i is computed for each vertex

vi such that ci
TVtet = vi, i.e. each point of the input mesh is represented

as a linear combination of all the points of T . Mean value coordinates are
C2-smooth and enable plausible pose transfer to Minput as shown in a similar
context in [13]. Unfortunately, they are very memory consuming and mesh
reconstruction takes significantly longer.

[33] use displaced subdivision surfaces [17] to transfer their deformation
from low resolution mesh to a high resolution input. But this method can
only construct a remeshed version of the input mesh with the connectivity of
the subdivision surface created from the low resolution version, and therefore
it is not suitable for our purpose.

We propose a method that combines the advantages of the first two meth-
ods mentioned above. Our approach represents vertices of the input mesh
as linear combinations of tetrahedra in the local neighborhood. By select-
ing the coefficients carefully, we can achieve a smooth deformation transfer
with a method that is far less memory consuming and computationally more
efficient than mean value coordinates.
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To put this into practice, we find for each vertex vi in Minput the set
Tr(vi) of all tetrahedra that have a boundary face center center(tj) which
lies within a local spherical neighborhood of radius r (in all our cases r was
set to 5% of the mesh’s bounding box diagonal). Subsequently, we calculate
the barycentric coordinate coefficients ci(j) of the vertex with respect to all
tj ∈ Tr(vi) and compute the combined coefficient vector ci as

ci =

∑

tj∈Tr(vi)
ci(k)φ(vi, tj)

∑

tj∈Tr(vi)
φ(vi, tj)

. (2.9)

φ(vi, tj) is the Wendland weighting function with respect to the distance of
vi to the boundary face center of tetrahedron tj

φ(vi, tj) =

{

0 if d > r

(1 − d
r
)4(4d

r
+ 1) if d ≤ r

(2.10)

with d = ‖vi − center(tj)‖ . (2.11)

The coefficients for all vertices of Minput are combined into the previously
mentioned matrix B. Thanks to the smooth partition of unity definition and
the local support of our parametrization, we can quickly compute a smooth
and natural looking transformed input M′

input at moderate memory costs by
calculating new vertex positions as

M′

input = T ′B (2.12)
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3 Results

We have tested our real-time editing technique for performing high-quality
shape deformation on a variety of complex models, Sect. 3.1. Additionally,
we demonstrate that our method is well-suited for generation of lifelike mesh
animations from motion capture data, Sect. 3.2. Finally, we first discuss some
of the basic geometric properties of our technique and highlight advantages
over related approaches, Sect. 3.3.

3.1 Model editing

We have used our approach for interactive editing of several high resolution
meshes, as shown in Figs. 1.1 and 3.1. Tab. 3.1 contains detailed information
on the complexity of different models, as well as timing results for the indi-
vidual processing steps in our approach. The accompanying video also shows
a live capture of an editing session, illustrating that plausible deformations
can be quickly achieved using easy-to-specify deformation handles. In our
test cases, both large region handles (prescribing position and orientation)
and point handles (prescribing only position) were used to create the various
poses. Please note the natural intuitive behavior of the deformation, as well
as the authentic look of the deformations also on the high-resolution meshes.
Even when using only a few handles it is possible to easily create convincing
results that look physically plausible. We would also like to point out that
thanks to the tetrahedral setting there is no noticeable loss in volume even
after very large deformations .

3.2 Animation using motion capture data

The flexibility in constraint handle positioning inside and outside a model,
as well as the ability to create plausible deformations from moving point con-
straints only, enables us to quickly generate realistic animations of models
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model fig input tet fact trans recons fps

Bar 2.3.2 N/A 857 / 2289 0.039 N/A N/A >120
B. Bar 2.1 N/A 1440 / 4302 0.074 N/A N/A ∼85
Plane 2.3.2 N/A 5066 / 16028 0.331 N/A N/A ∼20
Cylinder 2.3.2 N/A 7235 / 23831 0.565 N/A N/A ∼12

Man 3.2 39771 3474 / 12324 0.241 42.8 0.179 ∼24
Dragon 3.1 100004 3021 / 9802 0.128 94.5 0.442 ∼37
Raptor 1.1 175100 2512 / 9372 0.136 167.6 0.965 ∼37
Armadillo 3.1 195948 1688 / 5373 0.084 96.0 0.484 ∼57

Table 3.1: This table shows performance figures for our technique on an AMD
X2 5000+. The columns from left to right contain: Model name, figure
number in the paper, number of input mesh vertices, number of tet mesh
vertices/tetrahedra; thereafter, timings are given for pre-factorization of the
left-hand side matrix of Eq. (2.1), precalculation of pose transfer coefficients,
deformation transfer to input mesh; the rightmost column gives frames per
second during interactive editing of the tetrahedral mesh. All other timings
are given in seconds.

using captured motion data. To demonstrate this, we mapped motion data
acquired with a marker-based optical capturing system, as well as data cap-
tured with a marker-free motion capture algorithm [9] to high-quality laser
scans of humans, Fig. 3.2, as well as to the Stanford Armadillo model. The
accompanying video shows several examples in which the models perform
complex motions, such as a cartwheel. Depending on the type of motion
data, different kinds of deformation handles can be specified.

In the case of marker-based motion capture data, we can use the raw 3D
marker trajectories as deformation constraints. As a preprocessing step, we
align the model to the marker positions in the first frame by hand. After
alignment, we generate an additional vertex at the marker positions and
connect these markers to the model T by adding a set of invisible tetrahedra
which connect the markers to the closest boundary faces. This allows us to
use markers at arbitrary positions close to our model surface to deform the
object.

By this means, we can bypass the labor-intensive and often error-prone
reconstruction of a kinematic skeleton from the marker data and utilize the
raw measurement output straight away. In case we are already given a tem-
plate skeleton mesh (as for example the default motion template from 3D
Studio) we can pre-align our model to it and use vertices of the skeleton as
deformation handles by means of the same linear-combination approach.

The marker-less motion capture results come already in the form of a
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coarse moving kinematic body model comprising of individual triangle mesh
segments. By specifying corresponding vertices on the template and the mesh
T , it becomes straightforward to map the motion onto a scanned model.
The accompanying video shows an example sequence in which the dancing
performance of an actor was captured and applied to a scan of himself.

If only few handles are used, we additionally mark a set of rigid groups on
the model to be deformed, Fig. 3.2. The whole handle setup-process typically
takes only 3-4 minutes for a single animation.

The final animation is computed as follows: For each frame we update
the position of the handle constraints, run the iterative deformation for a
number of cycles (typically 2-3 cycles are sufficient) and afterwards deform
the input mesh using the technique from Sect. 2.4. In practice, we use the
tetrahedral mesh model for real-time pre-visualization of the animation, but
render the high-quality deformation in a batch process that takes between
0.1 and 0.5 s to write one frame (see Tab. 3.1).

Our results show that our method provides a fast and easy-to-use algo-
rithmic alternative to create high-quality mesh animations from captured
motion data. Realistic smooth surface deformations and subtle motion de-
tails are faithfully reproduced without having to rely on an intermediate
skeleton representation with associated skinning weights.

3.3 Geometric properties

Our deformation technique has several distinct advantages over a purely lin-
ear deformation method. While the inability of a purely linear approach to
handle rotations quickly leads to a deterioration of the deformed geometry,
our iterative approach handles rotations faithfully lending a plausible appear-
ance of the transformed model. Our results are also more pleasing than the
ones obtained with a gradient-based deformation techniques, as we faithfully
handle translations. By iteratively computing small pose updates in a clever
linear framework we can produce similar results as state-of-the-art non-linear
methods, such as [6].

Despite these advantageous properties, our tetrahedral method is not
suitable for real-time deformation of very large triangle meshes. We thus
deform them based on decimated tetrahedral representations. However, we
would like to point out that this is not a principle disadvantage since it is
our primary goal to modify the low-frequency components of a model which
contain information about its pose. Working on a low resolution mesh is
equivalent to performing a low-pass filtering of our geometry and adding the
high frequency detail back after the low frequency components have been
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Figure 3.1: Results of an interactive editing session. Input models and their
tetrahedral counterparts with handles on the left, three resulting poses on
the right.

modified.
Our volumetric method has more favorable shape preservation properties

than approaches working on triangulated manifolds. Due to the tetrahedral
construction our approach aims at preserving distances between diametrically
opposed vertices on the model’s surface. Given an appropriately set up mesh,
this can be regarded as a tendency to preserve cross-sectional areas. Although
this does not imply global volume preservation, it comes close to a local
volume preservation which is very useful when animating shapes where one
wants, for instance, the thicknesses of limbs to be preserved. We’d also like to
emphasize that our method does not impose strict shape quality requirements
to the generated tetrahedra, and even meshes without interior vertices can
be deformed in an intuitive way.

Another beneficial property of our deformation is its robustness even un-
der extreme conditions. Even if we completely randomize the differential
coordinates of an object constrained by a few handles we can recover the
original shape after a number of iterations (see the accompanying video for
an example). This means that it is virtually impossible to break the defor-
mation process by careless constraint placement.

Our algorithm can also be interpreted as a form of extremely simple non-
linear optimization of elastic energy. Elastic deformation is characterized
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Figure 3.2: Animation of a scanned character using optical MoCap data.
From left to right: Input model, reduced tetrahedral model with rigid regions
marked roughly, 22 input handles, five frames out of a cartwheel sequence.

as a deformation which behaves as rigid as possible locally. Our iterative
approach achieves this by iteratively removing as much non-rigid deformation
from the tetrahedra as possible. This can also be observed in the results of
our algorithm, as they behave very similar to elastic deformation simulations.
A way to speed up convergence of this non-linear approach would be to apply
multi-resolution techniques by generating a hierarchy of models.

In all our test cases and application scenarios we found that the deforma-
tion behaves intuitively and is easy to use even for unexperienced users. The
real-time deformation process in conjunction with immediate visual feedback
makes it convenient to obtain the envisioned results.
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4 Conclusion

We presented a volumetric interactive shape editing technique that alternates
between a linear tetrahedral Laplacian deformation and a differential update
step. By this means non-linear deformation behavior can be mimicked with-
out having to solve complex non-linear systems. Our method is highly stable
and enables even unexperienced users to create convincing results using only
few manipulation handles. Translational and rotational constraints can be
specified flexibly at arbitrary locations inside and outside the object. This
also allows us to use our algorithm for rapid generation of high-quality mesh
animations from motion capture data.

In the future, we plan to apply our method to enhance the quality of
model-based 3D video and to explore the possibility of using the approach
in the context of non-rigid shape matching.
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