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Abstract

We present an approach for modeling the human body
by Sums of spatial Gaussians (SoG), allowing us to per-
form fast and high-quality markerless motion capture from
multi-view video sequences. The SoG model is equipped
with a color model to represent the shape and appearance
of the human and can be reconstructed from a sparse set
of images. Similar to the human body, we also represent
the image domain as SoG that models color consistent im-
age blobs. Based on the SoG models of the image and the
human body, we introduce a novel continuous and differen-
tiable model-to-image similarity measure that can be used
to estimate the skeletal motion of a human at 5-15 frames
per second even for many camera views. In our experi-
ments, we show that our method, which does not rely on
silhouettes or training data, offers an good balance between
accuracy and computational cost.

1. Introduction

One of the fundamental problems in computer vision
is estimating the 3D motion of humans. Motion capture
is an essential part in a wide range of modern industries,
ranging from sport science, over biomechanics to anima-
tion for games and movies. The state-of-the-art in indus-
trial applications are still marker-based optical capture sys-
tems, which enable accurate capture at the cost of requiring
a complex setup of cameras and markers. A lot of research
has been devoted to developing marker-less methods which
can track the motion of characters without interfering with
the scene geometry [20, 22, 26].

Marker-less approaches that have been proposed address
several aspects like the human model [21, 1, 2, 14], the op-
timization approach [7, 9, 10], the image features [3, 27],
or motion priors [25, 29]. In this work, we revisit the hu-
man model that is used for tracking. While recent meth-
ods have focused on realistic 3D models of humans that can
nowadays be easily derived from full body 3D scans [1, 14],
early works like Pfinder [33] relied on simple spatial 2D
blob models due to computationally efficiency and achieved
real-time performance nearly 15 years ago. Although that

approach estimates the articulated pose only in 2D, it does
not rely on silhouettes obtained by background subtraction
as many current methods [26].

We investigate the idea of representing the human model
by a set of spatial Gaussians instead of making use of an
explicit surface modeled by geometric primitives or a de-
tailed triangle mesh. To this end, we create a person-specific
model from a sparse set of images. The model comprises
a kinematic skeleton that defines the degrees-of-freedom
(DoF) of the human model and a statistical model that rep-
resents the shape and appearance of the human. Since we
are interested in real-time performance for pose estimation
from multiple views, we use a Sums of 3D Gaussians (SoG)
for the statistical model. Furthermore, we also represent the
image as a sum of spatial 2D Gaussians that cover image
blobs that are consistent in color. Based on the representa-
tion of the model and the images as Sums of Gaussians, we
introduce a novel formulation of the model-to-image sim-
ilarity and derive an analytical solution that can be solved
very efficiently with a gradient ascent algorithm.

In our experiments, we demonstrate that our method,
which does not assume an a-priori background estimate,
works even in relatively uncontrolled settings. We are able
to track the motion in some challenging situations includ-
ing characters closely interacting with each other, and oc-
clusion situations, such as a person sitting on a chair at a
desk. We provide a quantitative evaluation of the track-
ing performance and demonstrate the reliability of our ap-
proach on 17 sequences with over 12000 frames of multi-
view video. Our unoptimized implementation processes a
multi-view sequence recorded with 12 cameras at a resolu-
tion of 1296 × 972 pixels at 5-15 frames per second on a
standard computer.

2. Related Work

Human motion capture has been extensively studied and
for a detailed overview we refer to the surveys [20, 22, 26].
Recent approaches [10, 18, 17, 5] that report good results on
the HumanEva dataset [26] rely on silhouette data, require
training data and/or do not achieve real-time performance.
The multi-layer framework proposed in [10] uses a particle-
based optimization related to [9] to estimate the pose from



Figure 1. Method overview: We construct an actor-specific human 3D body model based on SoG from a sparse set of multi-view
input images in a pre-processing step (top, Section 5.2). We convert our input video streams into a 2D SoG using a quad-tree (bottom,
Section 4.1), and use the 3D human body model to estimate the skeletal pose of the actor in the frames (right, Section 5.3).

silhouette and color data in the first layer. The second layer
refines the pose and extracted silhouettes by local optimiza-
tion. The full system requires about 2 minutes per frame.
The approaches in [18, 17, 5] require training data to learn
either restrictive motion models or a mapping from image
features to the 3D pose. These approaches do not gener-
alize to motions that are not part of the training data. By
contrast, we propose a nearly real-time approach that does
not rely on extracted silhouettes or training data.

Current real-time approaches rely on pose detection
based on some image features [28, 4, 31]. These ap-
proaches, however, assume that the poses have been pre-
viously observed during training. Most related to our ap-
proach is the real-time tracking system called Pfister pro-
posed by Wren et al. [33]. It models the human by 2D Gaus-
sians in the image domain and represents the appearance of
each blob by an uncorrelated Gaussian in the color space.
The background is modeled by Gaussians in the color space
for each image pixel. Pose estimation is finally formulated
as 2D blob detection, i.e., each image pixel is assigned to
the background or to one of the human blobs. The final 2D
pose is obtained by iterative morphological growing oper-
ations and 2D Markov priors. The approach has been ex-
tended to the multi-view case in [34] where the blobs are
detected in each image and the 3D position of the blobs is
then reconstructed using inverse kinematics. Our approach
does not rely on a statistical background model to detect
2D blobs in the image, but uses 3D spatial Gaussians for
the human model and 2D spatial Gaussians for the images
to introduce an objective function for the model-to-image
similarity that can be very efficiently maximized.

Human pose estimation without silhouette information
has been addressed in [6, 13, 8, 11, 24]. These approaches
combine segmentation with a shape prior and pose estima-
tion. While [6] use graph-cut segmentation, [8, 11] rely
on level set segmentation together with motion features or
an analysis-by-synthesis approach. In [13], handheld video

cameras and a structure-from-motion approach is used to
calibrate the moving cameras. While these approaches iter-
ate over segmentation and pose estimation, the energy func-
tional commonly used for level-set segmentation can be di-
rectly integrated in the pose estimation scheme to speed-
up the computation [24]. The approach, however, does not
achieve real-time performance and requires 15 seconds per
frame for a multi-view sequence recorded with 4 cameras at
resolution of 656× 490 pixels.

Our proposed human model is further related to mod-
eling humans with implicit surfaces. These models have
been used for 3D surface reconstruction, e.g., [16]. In [21],
a human model comprising a skeleton, implicit surfaces to
simulate muscles and fat tissue, and a polygonal surface for
the skin are used for multi-view shape reconstruction from
dynamic 3D point clouds and silhouette data. The implicit
surfaces are modeled by Gaussians. Since the estimation of
the shape and pose parameters is performed by several pro-
cesses, the whole approach is very time consuming and not
suitable for real-time application. To increase the reliabil-
ity, motion priors can be used to improve model fitting [30].
In [15], an implicit surface model of a human is matched to
3D points with known normals. By contrast, our approach
does not rely on 3D data clouds or silhouette data for track-
ing, but directly models the similarity between the model
and the unsegmented image data.

3. Overview

We capture the performance of an actor with ncam syn-
chronized and calibrated video cameras. The human body
model comprises a kinematic skeleton and an attached body
approximation modeled as a Sum of Gaussians; see Fig. 3.
The skeleton consists of 58 joints, modeling a detailed spine
and clavicles. Each joint is defined by an offset to its par-
ent joint and a rotation represented in axis-angle form. It
also features an allowable joint limit range ll to lh. The



model features a total of 61 parameters Λ, 58 rotational and
an additional 3 translational. The skeleton features further
a separate degree of freedom (DoF) hierarchy, consisting of
nDoF pose parameters Θ. For all the results in this paper
we used a DoF hierarchy consisting of nDoF = 43 pose
parameters.

A linear mapping between Θ and Λ is modeled as an
61× nDoF matrixM:

Λ =MΘ (1)

where each entry ofM defines the influence weight the pa-
rameters of Θ have on the joint angles Λ. This construction
allows the model to reproduce natural deformation of the
spine, as a single DoF can model smooth bending. It also
allows straight-forward creation of several different levels
of detail without having to edit the kinematic joint hierar-
chy itself.

An outline of the processing pipeline is given in Fig. 1.
In a pre-processing step, we use a low number of manu-
ally segmented multi-view images showing example poses
to estimate an actor specific body model (Section 4.2). This
model is then used for tracking the articulated motion of the
actor from multi-view input videos. Each input image is
converted into a SoG representation (Section 4.1). Tracking
starts with the estimated pose of the model in the previous
frame, and optimizes the parameters such that the overlap
similarity between the model and image SoG at the current
frame is maximized (Section 5.3).

4. SoG-based Similarity
We represent both the image domain Ω ∈ R2 and our 3D

human model as Sums of un-normalized Gaussians (SoG).
A single Gaussian B has the form

B(x) = exp

(
−‖x− µ‖

2

2σ2

)
(2)

where σ2 is the variance and µ ∈ Rd the mean. For the
image domain, we have d = 2, and d = 3 for the human
model. Note that the Gaussians model only spatial statis-
tics but not any appearance information like color. Since
we are interested in real-time performance, we currently do
not model the full covariance matrix. To cover the full im-
age domain or the 3D model, we combine several spatial
Gaussians into a Sum of Gaussians K:

K(x) =

n∑
i=1

Bi(x). (3)

In the image domain (Section 4.1), Eq. (3) describes the
spatial extent of super-pixels that cluster pixels with similar
colors as shown in Fig. 2. For the human body model (Sec-
tion 4.2), Eq. (3) describes the spatial extent of the human

Figure 2. SoG image approximation. Left: Input image. Right:
Quad-tree structure with average colors used to generate the SoG.
Each square is represented by a single Gaussian.

model as illustrated in Fig. 3. Note that our model has in
contrast to explicit surfaces infinite spatial support, but the
influence decreases with the spatial distance to the mean.

We store an additional color model C = {ci}i for each
SoG K, where ci is the color associated with the respective
Gaussian Bi.

4.1. Approximating Images using SoG

Given an image I, we want to find an approximation of
the form of an SoG KI that represents consistent pixel re-
gions. The straight-forward approach is to create a single
Gaussian Bi for each image pixel pi and assign to each
Gaussian the color value ci ∈ R3 of the pixel. However,
this creates an excessive amount of elements and introduces
a large performance penalty. To improve this, we use a
quad-tree structure to efficiently cluster image pixels with
similar color into larger regions and each of these regions
is then approximated using a single Gaussian Bi; see Fig-
ure 2). For clustering, we use a threshold εcol to determine
which pixels to cluster together (typically set to 0.15). If the
standard deviation of colors on a quad-tree node is larger
than εcol, we subdivide the node into four sub-nodes, up to
a maximum quad-tree depth of typically 8. Each quadratic
cluster is then represented by a Gaussian Bi where µ is the
center of the cluster and σ2 is set to be the square of half the
side-length of the node. Furthermore, the average color ci
of the cluster is assigned to the Gaussian.

4.2. SoG-based Body Model

Our body model consists of a kinematic skeleton to
which we attach a 3D SoG approximation of the per-
former’s body. We manually modeled a default human
model, consisting of 58 joints with 63 Gaussians attached
to it; see Figure 3. Each Gaussian is attached to a single
parent joint of the skeleton, resulting in an SoG model Km
that is parameterized by the pose parameters Θ of the kine-
matic skeleton. We adapt this model to generate an actor-
specific body model that roughly represents the shape and
color statistics for each person we want to track. Since the
model acquisition is just a special case of our tracking ap-



Figure 3. SoG-based body model. From left to right: Default
skeleton, default SoG model, actor-specific model. Each Gaussian
is illustrated as a sphere with the radius of its variance.

proach, the details will be presented in Section 5.2. From
now on, we assume that we already have a human body
model with a color value assigned to each Gaussian.

4.3. Projecting 3D SoG to 2D

For comparing the 3D body model Km with the image
modelKI, we have to define a projection operator Ψ, which
projects a given Gaussian B̃i : R3 7→ R of the model to a
Gaussian Bi : R2 7→ R. Given a camera Cl with respective
3 × 4 camera projection matrix Pl and focal length fl, we
define B = Ψl(B̃) as the following operations :

µ =

(
[µ̃p]x/[µ̃

p]z
[µ̃p]y/[µ̃p]z

)
s = s̃fl/[µ̃

p]z (4)

with µ̃p = Plµ̃ and [µ̃p]x,y,z being the respective coordi-
nates of the transformed Gaussian mean. Note that this is
only an approximation of the true projection due to compu-
tational efficiency. The perspective projection of a sphere
is usually not a circle as we assume, but rather an ellipsoid.
However, the error introduced by this approximation proved
to be negligible.

4.4. 2D-2D SoG Similarity

Given two SoG models Ka : R2 7→ R and Kb : R2 7→ R
and the associated color models Ca and Cb, where C =
{ci}i contains the color values assigned to each Gaussian,
we can define a function measuring the similarity of the two
models. This similarity is defined as the integral of the prod-
uct ofKa andKb and a similarity measure between the color
models, d(ci, cj):

E(Ka,Kb, Ca, Cb)

=

∫
Ω

∑
i∈Ka

∑
j∈Kb

d(ci, cj)Bi(x)Bj(x) dx

=
∑
i∈Ka

∑
j∈Kb

Eij , (5)

Figure 4. Self-occlusion handling. Inside boxes: Top view of
3D model SoG. Left of dotted line: Image plane with 2D Gaus-
sian. Left column: As long as no occlusions happen, Eq. (5) cal-
culates a correct overlap of a single element. In this example, the
color (blue) and the shape are identical, yielding the similarity Eii.
Right column: If several 3D model Gaussians project to the same
screen space coordinate, their contribution is cumulative, yield-
ing a similarity larger than Eii, even though two of the model
Gaussians should be occluded. Using Eq. (8) correctly limits the
contribution of a single 2D image Gaussians, yielding the same
similarity Eii for both cases.

where

Eij = d(ci, cj)

∫
Ω

Bi(x)Bj(x)dx

= d(ci, cj)2π
σi

2σj
2

σi2 + σj2
exp

(
−‖µi − µj‖

2

σi2 + σj2

)
. (6)

The similarity d(ci, cj) is modeled by

d(ci, cj) =

{
0 if ‖ci − cj‖ ≥ εsim,
ϕ3,1

(
‖ci−cj‖
εsim

)
if ‖ci − cj‖ < εsim,

(7)
with ϕ3,1(x) being the C2 smooth Wendland radial basis
function with ϕ3,1(0) = 1 and ϕ3,1(1) = 0 [32]. This
functional results in a smooth similarity measure that allows
for a certain degree of variation in color matching and is
guaranteed to be 0 if the difference between the colors is
larger than εsim, which was typically chosen to be 0.15.

4.5. 3D-2D SoG similarity

When considering the similarity between the projected
SoG model Ψ(Km) and the image model KI, we have to
take the special properties of the projection operation into
account. The projection function ignores possible self-
occlusions that may happen when projecting the 3D model
onto the 2D image plane. Several Gaussians may be pro-
jected onto overlapping 2D positions and thereby contribute
several times to the energy function. This issue can be re-
solved implicitly by modifying Eq. (5) to limit the energy
that a single image Gaussian can contribute to the total en-
ergy of the model:

E(KI,Ψ(Km), CI, Cm)

=
∑
i∈KI

min

 ∑
j∈Ψ(Km)

Eij

 , Eii

 (8)



with Eii = πσi
2 being the overlap of an image Gaussian

with itself, defining the maximal possible energy it can con-
tribute. This approach is intuitively motivated in Figure 4.
If an image Gaussian and a projected 3D Gaussian coincide
completely the overlap should be maximal. When project-
ing a second 3D model Gaussian to a nearby location, it can-
not contribute more to the already perfect overlap. While
this only partially approximates the effects of occlusion, we
found that it is sufficient to resolve most ambiguities in-
troduced by occlusions, while still allowing us to calculate
analytic derivatives of the similarity function.

5. A SoG-based Tracking Framework
Our goal is to estimate the pose-parameters Θ of the

kinematic skeleton from the set of input images I. To
achieve this, we define an energy function E(Θ) that evalu-
ates how accurately the model described by the parameters
Θ represents what we see in the images. The function is
based on the proposed SoG models and can be used for es-
timating the initial actor-specific body model (Section 5.2)
as well as for tracking of articulated motion (Section 5.3).

5.1. Objective Function

The most important part of our energy function is mea-
suring the similarity of the body model in the pose defined
by Θ with all input images. Given ncam cameras Cl with
respective SoG images (Kl, Cl) and the 3D body model
(Km, Cm) parameterized by the pose vector Θ, we define
the similarity function E(Θ) as

E(Θ) =
1

ncam

ncam∑
l=1

1

E(Kl,Kl)
E(Kl,Ψl(Km(Θ)), Cl, Cm).

(9)
For the final energy function E(Θ), we add a skeleton and
motion-specific term:

E(Θ) = E(Θ)− wlElim(MΘ)− waEacc(Θ). (10)

Elim(Λ), with Λ =MΘ (1), is a soft constraint on the joint
limits andEacc(Θ) is a smoothness term that penalizes high
acceleration in parameter space:

Elim(Λ) =
∑
l∈Λ


0 if l(l)l ≤ Λ(l) ≤ l(l)h
‖l(l)l − Λ(l)‖2 if Λ(l) < l

(l)
l

‖Λ(l) − l(l)h ‖2 if Λ(l) > l
(l)
h

Eacc(Θt) =
∑
l∈Θt

(
1

2

(
Θ

(l)
t−2 + Θ

(l)
t

)
−Θ

(l)
t−1

)2

where ll and lh are lower and upper joint limits and Θt−1

and Θt−2 the poses of the previous frames.
The weights wl and wa influence the strength of the con-

straints and were set to wl = 1 and wa = 0.05 for the
majority of our experiments. The impact of the constraints
is evaluated in the experimental section.

Figure 5. Estimating an actor specific model from example pose
images. Left: Single segmented input image of the multi-view
sets for each pose. Right: Resulting actor-specific body model
after optimization and color estimation.

5.2. Estimating an Actor Specific Body Model

We use our default skeleton and body model to estimate
an actor specific model in a pre-processing step; see Fig. 3.
We use a low number of temporally not subsequent, man-
ually segmented multi-view images of example poses as
shown in Fig. 5. The four example poses are chosen to ar-
ticulate a wide range of skeletal joints and therefore allow
a relatively accurate estimation of the bone lengths of the
skeleton. For each pose represented through a set of multi-
view images, we estimate the pose parameters Θ. Addition-
ally, we optimize a common set of shape parameters Θshape

that defines bone lengths as well as the positions and vari-
ances of the Gaussian model for a total of 216 degrees of
freedom.

The pose parameters Θ are roughly initialized to corre-
spond to the initial poses manually, and the similarity mea-
sure (9) based on the binary color values ci of the silhouette
is maximized using the gradient-ascent approach explained
in Section 5.3. After the joint optimization, we back-project
the color images of each pose onto the 3D Gaussian mod-
els and calculate the mean color ci for each Gaussian blob
taking occlusions into account. Figure 5 shows an actor-
specific model that has been acquired.

5.3. Articulated Motion Tracking

Given an image sequence with m frames, we want to es-
timate the pose parameters Θt for each time-step. In each
time-step, the parameters Θt are initialized by linear ex-
trapolation of the motion in the previous time-steps, i.e.,
Θt

0 = Θt−1 + α(Θt−1 − Θt−2) with α set to 0.5 for all
sequences. We now optimize the parameters to maximize
the energy (10). Because of the analytic formulation of
our overlap measure, we can calculate the analytic gradient
∇E(Θ) efficiently and use it in our optimization procedure.

As one of our main goals is fast performance, we apply
an efficient conditioned gradient ascent to optimize our en-



ergy function. Simple gradient ascent tends to be very slow
when optimizing energy functions that consist of long nar-
row valleys in the energy landscape, as it tends to “zig-zag”
between opposing walls. To prevent this, we introduce a
conditioning vector σi into the optimization

Θt
i+1 = Θt

i +∇E(Θt
i) ◦ σi (11)

Here, ◦ is the component-wise Hadamard product of two
vectors. The conditioner σi is updated after every iteration
according to the following rule:

σ
(l)
i+1 =

{
σ

(l)
i µ+ if ∇E(l)(Θt

i)∇E(l)(Θt
i−1) > 0

σ
(l)
i µ− if ∇E(l)(Θt

i)∇E(l)(Θt
i−1) ≤ 0

(12)

Intuitively this conditioning will increase step-size in direc-
tions where the gradient sign is constant, and decrease it if
the ascent is “zig-zagging”. This is inspired by the resilient
back-propagation algorithm [23] used for updating neural
networks, and proved to reduce the number of iterations
necessary to reach a minimum drastically without having
to resort to a more complex and more expensive second or-
der optimizer. We choose µ+ = 1.2 and µ− = 0.5 for all
our experiments.

We perform at least niter iterations for each time-step
and stop the iterations when ‖∇E(Θt

i) ◦ σi‖ < ε, where
niter = 10 and ε = 0.002 for most of our experiments.

6. Experiments
For evaluation, we processed 17 sequences with over

12000 frames. The sequences were recorded with 12 cam-
eras at a resolution of 1296×972 pixels at 45 frames per sec-
ond. Our quad-tree based image conversion (Section 4.1)
was set to a maximal depth of 8 nodes, effectively limiting
the used resolution to 162 × 121 2D Gaussians. We found
this resolution to be a suitable compromise between track-
ing accuracy in all our scenes and processing speed. We
used the HSV color space for calculating color similarity in
all our examples.

The sequences were recorded in a room without any spe-
cial background and cover a wide range of different mo-
tions, including simple walking/running, multi-person in-
teractions, fast acrobatic motions, and scenes having strong
occlusions by objects in the scene, such as chairs and ta-
bles. The remaining 5 sequences are taken from a different
dataset [19]. These sequences were recorded with a green-
screen background and show closely interacting characters
fighting, dancing, and hugging. Since our approach does
not rely on background subtraction, we do not make explicit
use of the green-screen, but our approach still benefits from
the distinct background color. The segmentation is handled
implicitly by our formulation. Please see the accompanying
video for more details.

wl 0.0 1.0 2.0
error (mm) 48.29 44.93 47.78

Table 1. Effect of the joint limit weight wl on tracking the ground
truth dataset. Disregarding this term will lead to physically im-
plausible joint motions, e.g., knees bending backwards.

wa 0.0 0.015 0.05 0.1 0.5
error (mm) 46.75 46.33 44.93 46.37 51.74

Table 2. Effect of the smoothness weight wa on tracking the
ground truth dataset. Low smoothness leads to jitter in the mo-
tion, while high smoothness decreases tracking accuracy.

To speed up the calculation of the energy function in
Eq. (10), we remove all image Gaussians Bi whose color
similarity is 0 to all of the body model GaussiansBj , as they
will not contribute to the energy function at all. We also re-
move all elements that are outside of an enlarged bounding
box of the pose in the last estimated frame.

Fig. 6 shows some pose estimation results of our algo-
rithm for 6 of the sequences from different camera views.
Our method tracked all 17 sequences successfully at 5− 15
frames per second depending on the scene complexity and
the actor’s motion speed. Even scenes with complex occlu-
sion scenarios and ambiguities can be tracked successfully.
For instance, we tracked a performer sitting at a table, and
a scene where two actors wearing similarly colored pants
interacted closely.

To evaluate the range of image resolution we can reli-
ably deal with, and thus how robust the algorithm is to cam-
era resolution, we also down-sampled the images of several
sequences to 81 × 60 pixels and created a single Gaussian
for each pixel. In this experiment, we could not observe a
significant loss of the tracking quality.

We compared a standard gradient ascent optimization to
our conditioned gradient ascent on the cartwheel sequence
shown in Fig. 6. The standard gradient ascent method re-
quired on average 65.38 iterations per frame to converge
and failed to track the pose of the arms correctly in some
frames. Our method on the other hand required only 34.56
iterations per frame and tracked the sequence successfully.

Quantitative Evaluation. We evaluated the accuracy of
our tracking approach and compared it to the method of
Liu et al. [19] on the ground truth multi-person data set
kindly provided. We associate the 38 marker positions of
the marker system with virtual markers on our body model
in the first frame by calculating the closest Gaussian and
attaching the marker to its parent joint. Due to the black
motion-capture suit and the fast motion, the sequence is dif-
ficult to track. The average distance between markers and
their corresponding virtual markers on our tracked model is
44.93mm with a standard deviation of 27.16mm. While
this is not as accurate as the result reported in [19], namely
29.61mm ± 25.50mm, their tracking algorithm employs
a laser scanned model and requires several minutes per



Figure 6. Tracking results of the proposed method shown as skeleton overlay over the input images. Each pair of images shows a single
frame of a sequence from two different camera views. From top to bottom, left to right: Sitting at a table, throwing game, cartwheel,
fighting, hugging, marker based evaluation scene.

frame for tracking, while our method tracks the sequence
at roughly 6 frames per second.

Without compensating for self-occlusions in the overlap
term as in Eq. (8), the sequence fails to track correctly at
all, leading to an error of 229.09mm ± 252.04mm. The
impact of the weights wl and wa for the joint limits and the
smoothness term in Eq. (10) is shown in Tables 1 and 2.

Limitations. Our approach is subject to some limita-
tions. Our constant color model assigned to each Gaus-
sian cannot faithfully model highly textured regions. Al-
though our approach achieves good results at nearly real-
time performance, the accuracy could be improved by us-
ing a more complex color model at the cost of increased
computational expenses. Due to efficiency concerns, the
current body model is also only a simplified approximation
of a true human body. The spherical shape of the Gaussians
make it difficult to accurately track twisting motions, e.g.,
of outstretched arms or the head. While anatomically cor-
rect arm motions can be resolved by inverse kinematics, the
head motion could be recovered by an explicit face or head
tracker.

Currently, our approach struggles when tracking scenes
with less than 5 cameras, where local minima in the energy

function are more prevalent. Here, the algorithm may fail to
track single limbs correctly and fail to recover. These prob-
lems could be overcome by using more complex appearance
models for the Gaussians, and by using more sophisticated
optimization approaches. Similar to [12], it would be possi-
ble to automatically detect tracking errors by inspecting the
fitting error and run a global optimization for the misaligned
parts.

7. Conclusions

We have introduced a novel model-to-image similarity
measure for articulated motion tracking. To this end, we
represent both the images and the human body model by
Sums of Gaussian where each spatial Gaussian is equipped
with a color model. Since the similarity measure is con-
tinuous and differentiable, we solve human pose estimation
nearly in real-time even for many camera views. Our ap-
proach offers a good control over accuracy and computa-
tional cost and can be intuitively adapted to the needs of
a given application by choosing the resolution of the im-
age and body-model approximations. The accuracy could
also be further increased by more complex color models and



the computation time can be further reduced by paralleliz-
ing the evaluation of the double sum in Eq. (8) using GPUs
or multi-processor systems. Unlike many recent algorithms
dealing with markerless motion-capture, our method does
not rely on background subtraction or training data and has
the capability of running in real-time. This makes the ap-
proach practical for real-world applications.
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