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Figure 1: One of our performance capture results. Left to right: input video, reconstructed geometry, edited video with virtual logo added.

Abstract

State-of-the-art marker-less performance capture algorithms recon-
struct detailed human skeletal motion and space-time coherent sur-
face geometry. Despite being a big improvement over marker-based
motion capture methods, they are still rarely applied in practical
VFX productions as they require ten or more cameras and a stu-
dio with controlled lighting or a green screen background. If one
was able to capture performances directly on a general set using
only the primary stereo camera used for principal photography,
many possibilities would open up in virtual production and pre-
visualization, the creation of virtual actors, and video editing dur-
ing post-production. We describe a new algorithm which works
towards this goal. It is able to track skeletal motion and detailed
surface geometry of one or more actors from footage recorded with
a stereo rig that is allowed to move. It succeeds in general sets with
uncontrolled background and uncontrolled illumination, and scenes
in which actors strike non-frontal poses. It is one of the first perfor-
mance capture methods to exploit detailed BRDF information and
scene illumination for accurate pose tracking and surface refine-
ment in general scenes. It also relies on a new foreground segmen-
tation approach that combines appearance, stereo, and pose track-
ing results to segment out actors from the background. Appear-
ance, segmentation, and motion cues are combined in a new pose
optimization framework that is robust under uncontrolled lighting,
uncontrolled background and very sparse camera views.
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1 Introduction

Marker-less performance capture methods enable the reconstruc-
tion of detailed motion, dynamic geometry, and the appearance of
real world scenes from multiple video recordings, for instance, re-
constructing the full body or face of an actor, [Bradley et al. 2010;
de Aguiar et al. 2008; Vlasic et al. 2008; Gall et al. 2009]. De-
spite the ability to capture richer and more expressive models than
marker-based capture methods, marker-less methods are yet to be
found in many practical feature film productions. One of the rea-
sons for this is that most existing marker-less methods require stu-
dios with controlled lighting, controlled background, and a multi-
tude of cameras. The benefit of being able to capture detailed mod-
els of actors in natural motion and natural apparel without markers
is constrained in application by the remaining requirement to cap-
ture the actors in a separate green-screen controlled stage and not
on set or on location. The ability to capture detailed moving 3D
models of actors on the actual production set rather than a separate
stage would broadly benefit movie and VFX production.

Currently, performances of real actors in a scene are frequently
composited with virtual renditions of actors during post-processing.
One example is the movie Pirates of the Caribbean, where real ac-
tors in a scene wear marker suits. The Imocap system is used to
track their skeletal motion from the primary camera and a few satel-
lite cameras and, in post-production, the actors in marker suits are
replaced with virtual renditions. This common example shows the
importance and tremendous difficulty of the task, since even the
skeletal tracking alone required substantial manual marker labeling
by an operator. On a real production set, it is difficult to effectively
place additional satellite cameras for tracking as the environment
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Figure 2: Overview of our performance capture method.

and scene conditions are very general and chosen with the visual
quality of the shot in mind. This is usually orthogonal to the re-
quirements that vision-based tracking algorithms have to operate
robustly. If we could capture detailed motion and surface geom-
etry automatically under the more general lighting conditions and
backgrounds of a production set, while using only production cam-
eras, then actors would benefit by being able to work on the real
set while being captured, more realistic overlays of virtual actors
could be created, more detailed pre-visualizations of CG augment-
ed actors on set could be created, and the recovery of a 3D model
underlying each actor in the scene would enable novel editing pos-
sibilities such as appearance modifications.

We describe a novel performance capture algorithm which works
towards this goal. It enables us to capture the full body skeletal mo-
tion and detailed surface geometry of one or more actors using only
a single stereo pair of video cameras. It is designed to work without
additional depth sensors, such as Kinect, which only work indoors,
have a limited range and accuracy, are not part of standard produc-
tion cameras, and may interfere with other on-set equipment. The
low-baseline stereo camera rig is permitted to move during record-
ing. This setting is akin to modern movie production sets with a
primary stereo camera. Our algorithm succeeds under uncontrolled
lighting, non-frontal body poses of the actors, and scenes in which
actors wear general apparel with non-Lambertian reflectance. It
also succeeds in front of general scene backdrops where classical
background subtraction would be infeasible.

1.1 Method Overview

Our algorithm tracks and deforms a template model for each ac-
tor in the scene such that it optimally aligns with stereo input im-
ages. In our setting, optimizing for pose and shape based on image
features and silhouettes, as was applied in previous multi-view ap-
proaches with green screen backgrounds, would fail as now we have
feature-full set backgrounds. Therefore, we rethink how illumina-
tion and reflectance are used for dynamic shape reconstruction. An
overview is shown in Fig. 2.

Input to our algorithm is a stereo video sequence of a scene filmed
with a camera rig that can freely move, as well as a light probe im-
age of the set without actors. We also expect for each actor a static

triangle mesh shape template with an embedded kinematic skele-
ton that can be obtained from a laser scan or from image-based
reconstruction. Instead of relying on simple light transport assump-
tions, and instead of assuming Lambertian surface reflectance, our
performance capture method is the first to apply knowledge about
the incident illumination and a detailed spatially-varying BRDF of
every actor in a scene for both skeletal pose estimation and for re-
construction of detailed surface geometry. Therefore, we expec-
t as additional input a spatially-varying parametric BRDF surface
model for every actor template, captured prior to stereo recording.
In practical productions, reconstruction of such a reflectance mod-
el for each actor is becoming standard and can be performed with
a light stage [Vlasic et al. 2009]. However, inspired by previous
capture methods under general illumination [Li et al. 2013], we
describe in this paper a lightweight method to estimate the BRD-
F based on multi-view video footage of a moving actor recorded
under standard studio lighting (Sec. 4).

Our main contribution is a new skeletal pose estimation approach.
It relies on a new stereo-based foreground segmentation algorith-
m that employs appearance cues, scene flow, pose reconstruction
results from previous frames, and stereo coherence to reliably seg-
ment out actors in front of general backgrounds (Sec. 5.1). Pose
estimation is based on minimizing a new energy that measures the
model-to-image consistency based on the segmented silhouettes,
the depth map given by scene flow, and the shading consistency
based on a full diffuse and specular surface BRDF model (Sec. 5.2).

First, our algorithm captures the skeletal pose of each actor together
with surface geometry which lacks high frequency shape detail such
as cloth folds (Sec. 5). Second, this detail is reconstructed by a
new inverse rendering approach that refines the coarse geometry
using shading-based dynamic scene refinement based on the scene
illumination and the full surface BRDF (Sec. 6).

We demonstrate the performance of our algorithm on a variety of
scenes with general uncontrolled lighting, and scenes showing sev-
eral actors performing motions with difficult occlusions and out-of-
plane motions. We also show results on footage with apparel with
challenging non-Lambertian appearance, and scenes filmed with a
moving camera rig. We qualitatively and quantitatively demon-
strate the accuracy of our method and the importance of each step,



and showcase that the quality of our reconstructions enables appear-
ance editing of actors in video (Sec. 7).

2 Related Work

Marker-less motion capture approaches reconstruct human skeletal
motion and have been developed in vision and graphics for many
years [Moeslund et al. 2006; Poppe 2007; Sigal et al. 2010]. Most
of them rely on a template skeleton with simple attached shape
primitives, to then minimize some form of model-to-image con-
sistency, e.g., edge or silhouette features using local or global opti-
mization methods [Deutscher et al. 2000; Bregler et al. 2004; Gal-
l et al. 2008; Sigal et al. 2010]. Even though recent techniques
approach real-time performance and capture complex motion [S-
toll et al. 2011], these methods expect more cameras than a sin-
gle stereo pair, and usually require recording in a studio environ-
ment with controlled lighting. Further, motion capture algorithm-
s do not reconstruct detailed surface models as we do in our ap-
proach. Monocular approaches for skeletal motion estimation have
also been proposed, but usually require manual interaction and do
not reconstruct detailed 3D surface geometry, e.g. [Wei and Chai
2010]. To move towards combined skeleton and surface capture,
researchers experimented with coarse 3D shape models in multi-
view motion capture [Balan et al. 2007], e.g., with parametric hu-
man templates. However, they deliver very coarse geometry and
expect actors to wear skin-tight clothing.

Marker-less performance capture approaches go beyond motion
capture and reconstruct dynamic geometry, possibly with skeletal
motion, of people in more general clothing. Some techniques rely
on shape-from-silhouette or active or passive stereo [Zitnick et al.
2004; Matusik et al. 2000; Starck and Hilton 2007; Waschbüsch
et al. 2005]. Vlasic et al. [2009] record a person with multiple
cameras in a dense controlled light stage and perform photomet-
ric stereo for capturing space-time-incoherent shapes. Model-based
approaches deform a shape template such that it resembles a per-
son [de Aguiar et al. 2008; Vlasic et al. 2008; Gall et al. 2009] or a
person’s apparel [Bradley et al. 2008] alone in multi-view video,
which yields spatio-temporally coherent reconstructions. Mesh-
based tracking approaches, as proposed by [de Aguiar et al. 2008],
provide frame-to-frame correspondences with a consistent topolo-
gy. The approach by Cagniart et al. [2010] makes a weaker a pri-
ori assumption by modeling the scene as a set of moving patches
that are tracked over time. Another set of model-based approaches
combine skeleton tracking with deformable surface tracking to cap-
ture people in more general apparel [Vlasic et al. 2008; Gall et al.
2009; Liu et al. 2011]. Some of these methods combine pose esti-
mation with image segmentation and optical flow [Bray et al. 2006;
Brox et al. 2006; Brox et al. 2010], and by this means also capture
more than one person in a scene [Liu et al. 2011]. However, most
methods are still restricted to controlled studios with green screen
background, and usually expect ten or more cameras. Moreover, the
amount of surface detail captured by these approaches is limited.

When using a complex controlled light stage indoors, more surface
detail can be reconstructed by exploiting visible shading informa-
tion [Vlasic et al. 2009]. Wu et al. [2011] extract more detail on per-
formance captured models recorded in uncontrolled indoor lighting
conditions. They solve a sequence of inverse rendering problem-
s and estimate the incident illumination in the scene, which they
subsequently employ for shading-based refinement of the dynamic
scene geometry. Shading information was also used for detailed
face capture, e.g., Beeler et al. [2012] use ambient occlusion to
improve the dynamic reconstruction of the face from multi-view
video. Wu et al. [2012] show that shading cues can be used for
more reliable skeletal pose tracking from multi-view video in in-
door scenes with more general backgrounds, where classical fea-

tures such as edges and silhouettes do not provide sufficiently reli-
able evidence. Li et al. [2013] not only capture the dynamic geome-
try, but also make use of the geometry to estimate the surface BRDF
to obtain a relightable performance. Hasler et al. [2009] jointly em-
ploy feature-based performance capture and structure-from-motion
of the background for outdoor motion capture with multiple cam-
eras. Their approach requires manual interaction and does not pro-
duce detailed dynamic surface geometry.

Unlike our approach, none of the methods mentioned so far suc-
ceeds with only a single mobile stereo pair of input cameras and in
general scenes with uncontrolled background and lighting. Further,
no existing techniques deliver reliable skeletal pose and detailed 3D
surface geometry in such conditions.

Instead of using a priori templates, some approaches build up a
spatio-temporally coherent shape model by space-time-analysis of
partial scanner data [Liao et al. 2009; Popa et al. 2010; Tevs et al.
2012]. For single objects in a scene, these approaches also suc-
ceed with sparse depth camera or scanner systems but, due to strong
regularization, they often capture geometry lacking high-frequency
detail. Further, due to drift, often the result becomes increasingly
smooth as time goes on. Unlike these methods, our approach uses
an a priori template, and captures highly detailed surface geometry
plus skeletal motion parameters, of more than one person, from a
stereo pair of cameras alone. Thus, it addresses the full pipeline
from the image data to geometry, succeeds on long sequences with-
out loss of detail, and delivers results in a parameterization that di-
rectly feeds into the processing pipeline known to animation artists.

Some earlier vision methods attempted to capture human skeletal
motion from stereo footage, e.g., [Plankers and Fua 2001], but did
not achieve a pose and reconstructions as detailed and reliable in
similarly general scenes as our method. Our work is also related
to recent works on skeletal pose estimation from depth cameras,
such as the Kinect, e.g., [Shotton et al. 2011; Ganapathi et al. 2010;
Wei et al. 2012]. These approaches are designed for real-time use
and reconstruct coarse skeletal motion and coarse surface geome-
try [Taylor et al. 2012]. High-quality pose and shape reconstruc-
tion is not their goal. In addition, most depth cameras only work
indoors, and have a very limited range and accuracy. In contrast,
our approach is designed to work directly from the primary stereo
rig used for filming, yet delivers results of higher detail and does
not require any specialized hardware that would limit the applica-
tion range. Conceptually related to our approach is the binocular
face capture method by Valgaerts et al. [2012]. Their approach al-
so succeeds in more general scenes, but our setting is even more
challenging, and specific new algorithmic segmentation and track-
ing solutions are needed to capture the full body motion, and in
particular the motion of several people when they are not clearly
the largest and most frontal object in a scene.

3 Preliminaries

In this paper we solve a variety of inverse rendering problems based
on the following light transport model. Given a model of shape,
illumination, and surface reflectance, the reflectance equation at a
surface point is defined as [Kajiya 1986]:

B (x, ωo) =∫
Ω

L(ωi)V (x, ωi) ρ (ωi, ωo) max(ωi · n(x), 0) dωi , (1)

where B (x, ωo) is the reflected radiance, and the variables x, n,
ωi, and ωo are the surface location, the surface normal, and the
incident and outgoing directions. The symbol Ω represents the do-
main of all possible directions, L(ωi) represents the incident light-
ing, V (x, ωi) is a binary visibility function, and ρ (ωi, ωo) is the



bidirectional reflectance distribution function (BRDF). By defin-
ing Lv(ωi) = L(ωi)V (x, ωi) as the visible lighting, ρ̂ (ωi, ωo) =
ρ (ωi, ωo) max(ωi·n(x), 0), and parameterizing them using Spher-
ical Harmonics (SH) [Ramamoorthi and Hanrahan 2001], the re-
flectance equation can be rephrased in the frequency domain:

B (α, β, θo, φo) =

FB∑
l=0

l∑
m=−l

PB∑
p=0

p∑
q=−p

Llm ρ̂lpqD
l
mq(α) eImβ Ypq(θo, φo) , (2)

where (α, β) and (θo, φo) are the spherical angular parameters of
n and ωo, FB and PB are the SH orders, and Llm and ρ̂lpq are
the SH coefficients of Lv(ωi) and ρ̂ (ωi, ωo). Dl

mq(α) is a ma-
trix modeling how a spherical harmonic transforms under rota-
tion into direction α, and Ypq(θo, φo) is the SH function. While
(α, β) are defined in global coordinates, (θo, φo) are defined in
local surface coordinates with the normal direction as north pole.
We assume the BRDF to be isotropic. In the case of Lamber-
tian reflectance, the image irradiance equation further simplifies to
[Ramamoorthi and Hanrahan 2001]:

Bd(α, β) =

FD∑
l=0

l∑
m=−l

Λl Llm ρ̂dl Ypq(α, β) , (3)

where ρ̂dl are the SH coefficients for the clamped cosine function,
Λl is a constant scalar for normalization, and FD is the SH order,
which is taken to be FD=4 in our experiment.

As can be seen in Eq. (2), parameterizing the reflectance equation
in SHs for general BRDFs is much more complex than the Lam-
bertian case. However, Ramamoorthi and Hanrahan [2001] showed
that when the central direction of the BRDF is available, like in the
Phong or Torrance-Sparrow model, a simple reparameterization in
the SH domain similar to the Lambertian case can be obtained:

Bs(α, β) =

FS∑
l=0

l∑
m=−l

Λl Llm ρ̂sl Ypq(α, β) , (4)

where ρ̂sl are the SH coefficients of the properly reparameterized
BRDF, and FS is the order of SH, which is generally higher than
for the Lambertian case. In our paper, we take FS = 10 and will
reduce it accordingly when BRDF parameters are obtained.

Similar to [Li et al. 2013], we estimate the BRDF as consisting of
a diffuse part with Lambertian reflectance and a specular part under
general illumination. However, instead of using a Phong reflectance
model as in their approach, we use a simplified Torrance-Sparrow
model [Torrance and Sparrow 1967] for the specular component.
Thus, for our setting, the BRDF can be defined as:

ρ (ωi, ωo) = kd +
ks

4πσ2
b cos θi cos θo

exp
(
−(θh/σb)

2) , (5)

where kd and ks are the diffuse and specular albedos, θi, θo, and
θh are the incoming light direction, the viewing direction, and the
half angle, all defined with respect to the surface normal, and σb is
the surface roughness. The Torrance-Sparrow can be parameterized
using a model based on the viewing vector mirrored at the surface
normal in the SH domain by using coefficients of the form Λl ρ̂sl≈
exp

(
−(σb l)

2
)
. Therefore, our final SH-parameterized reflectance

equation takes the form:

B(α, β) = kdBd(α, β) + ksBs(α, β) , (6)

Based on the image irradiance equation described above, we first in-
troduce how to inversely estimate the BRDF function from a multi-
view and multi-lighting image sequence in Sec. 4. Afterwards, an

Figure 3: Reflectance estimation: (a) input image, (b) material
segmentation, (c) estimated spatially varying diffuse albedo, (d) es-
timated per-segment specular albedo, (e) the light probe images.

analysis-through-synthesis pose estimation method is explained in
Sec. 5 and a new shape refinement method based on Eq. (6) is in-
troduced in Sec. 6.

4 Template and Reflectance Reconstruction

A first input to our algorithm is a static triangle mesh shape template
M for each tracked actor. We use a laser scanner, but M could also
be obtained via image-based reconstruction. The template is pur-
posefully smoothed to remove static high-frequency shape detail.
A bone skeleton with 20 joints and 37 degrees of freedom controls
the motion of the shape template via skinning.

A model of surface reflectance for every actor is a second impor-
tant prerequisite enabling stable binocular performance capture in
general scenes (see Sec. 5). Such a model can be captured using
a light-stage [Vlasic et al. 2009]. However, with wider applica-
bility in mind, we employ an alternative solution that is based on
a simpler studio setup and is inspired by methods that are able to
capture the BRDF under general illumination [Li et al. 2013]. Our
approach consists of three light sources placed vertically at differ-
ent heights and a calibrated multi-view camera system (see Fig. 3),
a set-up that is close in spirit to [Theobalt et al. 2007]. The actor is
recorded performing a simple rotational motion with all three light
sources turned on sequentially. Prior to recording, a ground truth
environment map is captured for each such lighting condition and
projected into spherical harmonics space. Then, we use a state-of-
the-art performance capture algorithm [Wu et al. 2012] to track this
simple sequence with our shape template.

The rotating motion of the performer allows us to collect reflectance
samples of visible surface locations in the camera views. These
samples are captured under different illumination and viewing con-
ditions covering a range of azimuthal angles, while the vertical dis-
placement of the light sources gives us measurements on different
elevation angles. From these samples, we estimate the BRDF pa-
rameters kd, ks and σb (see Sec. 3). Although it is desirable to
estimate these parameters for each point on the template mesh, the
high-frequency reflectance component is particularly hard to esti-
mate from a relative sparse set of samples. To make the calcula-
tion tractable, we assume the surface to comprise a discrete set of
B materials Kb (such as skin), each with a constant specular re-
flectance. This discrete set of materials is manually segmented in
the first frame (see Fig. 3), but could also be found via color cluster-
ing [Wu et al. 2011]. Another simplifying observation is that many
common materials are dielectric, i.e., the generated highlights are
of the same color as the light source. Following this assumption,
we can represent the specular albedo ks as a scalar value. Thus,
we solve for a per-vertex kd, a per-patch specular albedo ks, and a
per-patch surface roughness parameter σb.



BRDF estimation is performed in an iterative coarse-to-fine way.
In a first iteration, we assume that all BRDF parameters are con-
stant for all vertices of a material Kb. Then, we minimize the error
between the rendered model under the calibrated lighting and the
input frames:

EBK =
∑
f

∑
v∈K,c∈Nc

wx,c ‖kdBd + ksBs(σb)− Ic(x, f)‖, (7)

where f is the frame index, v is the vertex index, c is the camer-
a index, and wx,c is a weighting factor. The surface normals of
the coarse model reported by performance capture are too coarse to
estimate the reflectance reliably. Therefore, we interleave a refine-
ment of the surface normal orientations using a shape-from-shading
approach similar to [Zhang et al. 1999] with the estimation of the
reflectance. We perform normal refinement for each camera view.
We iterate normal refinement and reflectance estimation, typically
twice. After the first iteration of BRDF and normal estimation, we
allow the diffuse albedo kd to vary for every vertex, while keeping
ks and σb fixed per material. To prevent kd and ks from being neg-
ative in the optimization, we reparameterize them as kd=r2

d and
ks = r2

s , and optimize rd and rs instead. All optimization steps
are performed with a conjugate gradient solver. We start by setting
FS=10, and when the BRDF parameters are obtained, we adaptive-
ly reduce FS for each material segment using a strategy similar to
[Ramamoorthi and Hanrahan 2002] to reduce processing time.

5 Skeletal Motion Estimation

It is our goal to estimate detailed surface and skeleton motion of
actors in general clothing, who perform general motion in sets with
no controlled background, merely from the video footage of a pos-
sibly moving stereo camera rig. Compared to previous multi-view
performance capture algorithms that operate with tens of cameras
and in front of a green screen for easier background subtraction,
the drastically reduced set of views and the uncontrolled environ-
ment represent a previously unseen challenge. Thus, we need to
fundamentally rethink which data cues to use for tracking, how to
measure the model-to-image data consistency, and how to optimize
the pose and shape parameters of the template model.

To meet this challenge, our method is the first to jointly employ
shading cues from a full BRDF model, from depth information, and
from motion information extracted from binocular views, and to
robustly extracted foreground regions representing actors, all from
binocular footage in general scenes. First, a light probe image of
the empty set is captured, assuming that the lighting is constant
for the duration of the recording. Then, we employ the variational
approach of Valgaerts et al. [2010] to compute the 3D scene flow
between each consecutive pair of frames. This approach computes
optical flows in each camera view and 3D stereo geometry for each
time step, both of which are used by our algorithm.

Performance capture now subsequently processes pairs of stereo
video frames, by alternating the following two steps:

1. A new segmentation method is applied to robustly segment
out the regions in the depth maps corresponding to persons in
the foreground, even if the stereo rig is moving and the back-
ground has a general appearance and shape (Sec. 5.1). To
succeed in this challenging setting, the segmentation method
jointly relies on color information, a scene flow-induced body
shape prior derived from previous body poses, and stereo con-
straints between input image pairs. Segmentation produces a
depth region of the person to be tracked whose outlines pro-
vide additional silhouette cues for performance capture.

2. The current pose and shape of the actor are found by optimiz-
ing a pose error (Sec. 5.2). To this end, we employ a tracking
algorithm that, for the first time, jointly relies on appearance
cues from a full BRDF with diffuse and specular component,
silhouette cues, and scene flow information.

5.1 Foreground Segmentation

Automatically obtaining clean segmented regions of depth belong-
ing to persons in the foreground is a prerequisite for reliable binoc-
ular full body performance capture. Many previous segmentation
approaches used color alone for segmenting foreground objects in
video. Unfortunately, colors of foreground objects in general scenes
can be very similar, leading to segmentation errors. Often on-
ly manual intervention can resolve these problems [Rother et al.
2004]. However, even for multi-view performance capture of inter-
acting persons in front of a green screen, color information alone
was found to be insufficient for labeling persons in video [Liu et al.
2011]. Depth thresholding alone is also not a reliable cue to seg-
ment out the person in a scene since, depending on the surrounding
geometry, the person may not be the closest object to the camer-
a. Finally, depth or image differencing alone is not suitable, since
with a moving camera rig the background model would need to be
permanently updated and possibly tracked with a structure-from-
motion approach, which is error-prone with a dynamic foreground.

To succeed with a sparse set of binocular views, a general back-
ground, and a possibly moving rig, we employ a Markov-Random-
Field (MRF)-based segmentation approach that combines evidence
from a variety of scene cues to obtain a reliable segmentation of the
persons in the foreground in both input views, and thus in the stere-
o depth. Foreground segmentation was also employed for motion
tracking by Brox et al. [2006; 2010] in a multi-view setting by com-
bining appearance cues, modeled by a Gaussian distribution, with
a shape prior, provided by the object contour at the current pose.
They evolve the object contour by minimizing a non-linear energy,
which is sensitive to local minima. Here, we formulate the segmen-
tation as a labeling problem which can be solved efficiently by a
graph cut algorithm, and we model the appearance by a Gaussian
mixture model (GMM) which enables the segmentation to work for
textured objects. Further, we include a shape prediction by the es-
timated scene flow to obtain a more accurate shape prior and add a
new stereo constraint as a consistency check between both cameras.

For every time step, segmentation is performed in two stages: 1) In
a first stage, pixels in the left and right images are labeled separately
as person in the foreground or as background. In case of multiple
persons in the scene, a separate two-label segmentation is solved
for each person. 2) In a second stage, the segmentations of each
person from both views are fused.

Stage I: In the first stage, the segmentation finds the least energy
(maximum likelihood) configuration L={lp | p ∈ 1, . . . , Np; lp ∈
{0, 1}} of the MRF, assigning binary labels lp to each of the Np
pixels. The energy is defined as follows:

DS
1 (L) =

∑
p∈P

λAD
A
p (lp) + λGD

G
p (lp) + λSDpq(lp, lq) . (8)

DA
p (lp) is a likelihood term penalizing the assignment of label lp

to pixel p based on its color, DG
p (lp) is a shape prior exploiting that

the body model pose in the previous frame is known and the scene
flow between the previous and the current frame is available, and
Dpq(lp, lq) is a regularizing contrast term which favors that pixel-
s have the same label when their color is similar. The weighting
factors are experimentally set to λA=2, λG=10 and λS=50.



Figure 4: Foreground segmentation: (a) input image, (b)+(c) color likelihood for background and foreground (white: high, black: low), (d)
segmentation result using only color likelihood, (e) color term and shape prior likelihood, (f) final segmentation result using all components.

Color Likelihood A separate color model is used for foreground
(l = 0) and background (l = 1). For both, it is implemented as a
GMM of RGB colors with K = 6 mixture components. The k-th
Gaussian N

(
I(p) |µl,Σl

)
in the GMM corresponding to label l

is parameterized by a mean µlk, a covariance Σlk, and a weight ωlk.
Given the pixel color I(p), the appearance costDA

p (l) for assigning
to it a label l is defined as the negative log-likelihood of:

p
(
I(p) |µl1,Σl1, ωl1, . . . , µlK ,ΣlK , ωlK

)
=

K∑
k=1

ωkN
(
I(p) |µlk,Σlk

)
. (9)

The GMMs for foreground and background are continuously re-
trained over time to increase robustness under lighting and appear-
ance changes. To train the GMMs for the current frame, we take
the foreground and background regions of the previous frame and
warp them to the current frame by means of the optical flow com-
puted as part of the scene flow estimation. The colors of the warped
regions are used for training the GMM models of the current frame.
Fig. 4 (b) and (c) show the results of assigning pixels to foreground
or background using the color term for the input image of Fig. 4
(a). As shown, the color term is able to distinguish most of the
foreground. However, it may not be sufficient when the foreground
color is similar to the background, e.g., the lower foot in Fig. 4 (a),
which leads to an incorrect segmentation result as seen in Fig. 4 (d).

Shape Prior The shape prior measures the label assignment cost
based on a prediction of the pose of the model in the current time
step given that its pose in the previous time step is known and mo-
tion is smooth. We model this term by warping the previous pose of
the shape model onto the current frame via scene flow. The warped
model is projected onto the image and we build a heat map HG

based on the pixel’s distance to the outer contour of the projected
model. The shape prior cost is defined as the negative logarithm of:

HG
p (lp) =


1

1+exp(−d2p/(2σ2
p))

lp = l̂p

1

1+1/ exp(−d2p/(2σ2
p))

lp 6= l̂p
, (10)

where dp is the distance from pixel p to the nearest contour point,
l̂p is the pixel label given by the warped projected model, and σp
is experimentally set to 5 for all experiments. Fig. 4 (e) shows the

cost function of assigning pixels to the background, which helps to
correctly segment the foot part to the foreground in Fig. 4 (f).

Smoothness Term The contrast term Dpq takes the same form
as described in [Liu et al. 2011] and is defined as:

Dpq(lp, lq) =

 γ
s(p,q)

exp

(
−‖Ip−Iq‖2

2σ2
c

)
lq 6= lq

0 lp = lq

, (11)

where s(p, q) is the spatial distance between the pixels.

The minimum energy (8) is found via graph cuts [Boykov and
Funka-Lea 2006]. For efficiency, segmentation is performed for
a conservative extended bounding box around the foreground ac-
tor, centered at the location from the previous frame warped by the
scene flow. Pixels outside the box are labeled as background.

Stage II: In the second stage, we perform another segmentation of
each image by taking into account information from the other cam-
era. Specifically, we augment the MRF energy such that for each
pixel in the current view, we check the consistency with the seg-
mentation in the other view. We derive a stereo-based confidence
measure by warping the segmentation of the other view into the
current view using scene flow. If the warped segmentation assigns
the same label to a pixel in the current view, the pixel is marked
as trusted. Then, we retrain the color GMMs for the foreground
and background using only trusted pixels in both views. Finally,
another graph cut segmentation is performed by minimizing:

DS
2 (L) =∑

p∈P

λAD
A
p (lp)+λGD

G
p (lp)+λSDpq(lp, lq)+λOD

O
p (lp). (12)

The main extension is the added stereo constraint DO
p . It assumes

the value 1 if trusted pixels are assigned a different label than in
Stage I, 0 otherwise. For untrusted pixels, DO

p is set to 0.5 for both
labels. The weighting factor λO is experimentally set to 100.

5.2 Pose Estimation

Given a template model of the actor, including a rigged and skinned
3D mesh with reflectance information for each vertex, we track the



motion of actors in a binocular input video recorded in an arbitrary
uncontrolled environment. As common in related work, we for-
mulate this as a sequential problem. Given the pose at time t−1,
the geometry Mt−1 at time t−1, and two pairs of images at times
t−1 and t respectively, we want to estimate the skeletal pose at
time t. We formulate this as an energy minimization based on the
constraints coming from the cues obtained in the previous steps. Li
et al. [2013] employ the silhouette and feature constraints for pose
estimation in a multi-view setup, which is not enough for our setup
(see the comparison in Sec. 7). Our energy for pose estimation takes
three terms. The first term ES encodes information from shading
cues and measures the difference between the captured images and
a rendered version of the character based on the reflectance and
the captured environment map. The second term EG comes from
the depth cues, which measures the difference between our current
pose and a depth map of the current image pair calculated as a by-
product of the scene flow method. The third term EH contains the
silhouette cues and measures the difference between the projected
contour of the mesh at the current pose and the segmented silhou-
ette. The three terms are combined into a single total energy term:

ET = βS E
S + βGE

G + βLE
H , (13)

where βS , βG, and βL are weighting factors. We optimize this
energy in as a function of the skeletal joint angle parameters using
a simple conditioned gradient descent method similar to [Stoll et al.
2011]. The weighting factors are experimentally set to βS = 1
and βL = 10 for all sequences, while βG = 20 for sequences with
moving cameras and βG=10 for all other sequences.

Shading Term Similar to [Wu et al. 2012], the shading energy
ES measures the similarity between a rendered image of the cur-
rent pose of the actor under the known lighting and reflectance and
the captured images. In contrast to previous work, we do not as-
sume Lambertian reflectance, but propose one of the first methods
to employ a full BRDF model with diffuse and specular reflectance
as cues in a 3D pose tracking framework. We demonstrate in the
experimental section Sec. 7 that by relying on this more advanced
light transport model, we can obtain more accurate and more ro-
bust tracking results even with sparse input data captured in general
environments. For a single camera c, we write:

ESc =
1

Ns
c

∑
i

(
B (c, vti ,n

t
i)− Itc(xti, yti)

)2
, (14)

where Ns
c is the number of visible vertices in camera c, (xti, y

t
i) is

the projection of the surface vertex vti , n
t
i is the corresponding sur-

face normal, and B is the radiance calculated according to Eq. (3)
and Eq. (4). While lighting and reflectance functions are constan-
t, the vertex positions vti , the projections (xti, y

t
i), and the normals

nti depend on the pose parameters of the model. If we ignore po-
tential visibility changes in the vertices, we can calculate analytical
derivatives of this function using a Taylor expansion.

Depth Term We estimate per-camera depth maps as part of
the scene flow computation. Using the segmentation obtained in
Sec. 5.1, we remove the background from the depth map. The seg-
mented foreground depth is then refined by removing interpolated
depth values at occlusion boundaries via triangle normal orientation
thresholding relative to the viewing direction. Based on the filtered
foreground depth map, the second component of the pose energy
encodes iterative-closest-point-like constraints:

EGc =
1

Ng
c

∑
i

(
vti − c (vti)

)2
, (15)

Figure 5: Surface refinement on a synthetic test sequence: (a) one
of two input images, (b) refined shape using [Wu et al. 2011], (c)
refined shape using our method, (d) ground truth shape.

where c (vti) is the corresponding 3D point for vertex vti in the re-
projected depth map of camera c based on an approximate nearest
neighbor search.

Silhouette Term Following our segmentation, the contour pixels
of an actor in the foreground can be conveniently detected in each
camera view, enabling us to define a silhouette consistency term.
For each of the Nh

c contour pixels, we define a projection ray that
can be parameterized as a Plücker line Hi = (ni,mi) [Gall et al.
2009]. The silhouette consistency term sums the distance between
each line Hi and its closest vertex v(i)t on the body model:

EHc =
1

Nh
c

∑
i

(
v(i)t × ni −mi

)2
, (16)

If more than one person is present in the scene, the steps in this
section are run for each person separately.

6 Shape Refinement

Skeletal tracking yields the coarse shape of each actor in the scene
at every time step. However, fine scale surface detail visible in the
images is missing. We recover this with an extended version of the
photometric refinement process described in [Wu et al. 2011]. We
formulate this problem as a spatio-temporal MAP inference prob-
lem, where the cost function takes the form:

ψ (gt) = φ (It | gt) + φ (gt | gt−1) , (17)

where φ (It | gt) is the shading error that measures the similarity of
the image gradients in the input image It to the predicted rendered
shading gradients according to the image reflectance equation de-
scribed in Sec. 3. The unknown gt represents the refined surface
geometry for every vertex as a displacement from M t

c in the local
normal direction. The term φ (gt | gt−1) is a prior that requires the
current refined surface geometry to be similar to the refined surface
geometry of the previous time-step, transformed to the current time-
step via skeleton-based deformation and surface skinning using the
pose parameters obtained in Sec. 5.

Unlike [Wu et al. 2011], we adapt the geometry refinement ap-
proach to explicitly consider a full diffuse and specular BRDF,
rather than just diffuse reflectance. Our method is related to previ-
ous stereo methods that phrase multi-view consistency under gen-
eral surface BRDFs, e.g., [Davis et al. 2005], but unlike these we
do not require images under multiple and often calibrated lighting



Figure 6: Performance capture results of our algorithm on real world sequences. Left to right: one of the two input images, segmentation
and tracked skeleton as an overlay, 3D geometry after skeletal pose estimation, 3D geometry after surface refinement.

conditions. Since we are able to exploit the information in the ful-
l BRDF, our method not only works as well as [Wu et al. 2011]
on diffuse surfaces with sparse binocular input data, it also suc-
cessfully recovers surface detail on very specular surfaces where
the previous method would fail, e.g., the specular jacket in the bot-
tom row in Fig. 6. As a final result, high frequency shape detail
on the surface, such as fine folds and creases, are recovered in a
spatio-temporally coherent way. To optimize this energy function,
we employ the Levenberg-Marquardt algorithm, which is similar
to [Wu et al. 2011]. Fig. 5 shows a comparison of our refinement
method with [Wu et al. 2011] on a specular surface.

7 Results

We recorded 3 test sequences consisting of over 1300 frames. The
data was recorded with a stereo rig with a baseline of ≈ 22 cm at
a resolution of 1024×1024 pixels and at a frame rate of 45 fps.
Each sequence shows two people wearing casual clothing perform-
ing a variety of different motions in front of a general background.
The scenes provide various challenges, such as moving cameras,
specular apparel, close contact with background objects, and par-
tial occlusions (see Fig. 6 and supplementary video), which would
make tracking these sequences with previous approaches challeng-
ing. We also evaluate our method on a synthetic data set. The pose
for the first frame is initialized manually, followed by the local op-
timization described in Sec. 5.2. The mask image for the first frame
is generated using a segmentation tool [Rother et al. 2004].

The first sequence (Fig. 6, top) contains two people who initially
are standing and talking, and then start to dance. Our algorithm
successfully evaluates the pose and reconstructs small details such
as the folds in the shirts accurately from the stereo images. The
second sequence (Fig. 6, middle) shows two actors in the process
of sitting down on a couch, and is recorded with a moving cam-
era. Even though the actors are in contact with the couch in the
background and some partial occlusions take place, the motion and
surface detail is reconstructed accurately. As the camera is moving,
we only reconstruct the relative pose of the actors with respect to
the camera (i.e., we do not distinguish between camera motion and
actor motion). The third sequence (Fig. 6, bottom) shows two ac-
tors jumping and kicking. Even though the motions are very fast,
the pose estimation is successful. Further, even though the left ac-
tor wears a highly specular jacket, the surface detail is reconstructed
accurately by our method. This highlights again the importance of
using a non-Lambertian BRDF, since a method based on Lamber-
tian shading would fail in estimating surface detail accurately.

Scene Enhancement We use the tracked motion and refined sur-
face of the scenes to modify the original footage from the stereo
camera. As our geometry is spatio-temporally coherent, it is easy
to add new textures on top of the original footage or peform other
modifications (see Fig. 1 and supplementary material).

Quantitative Evaluation To evaluate our method quantitatively,
we generated a synthetic data set consisting of 100 frames by ren-



Figure 7: Quantitative evaluation on a synthetic sequence, showing mean and standard deviation for each frame: (a) joint position error, (b)
vertex position error for refined shape, (c) normal direction error for refined shape.

Figure 8: Comparison of our method with [Li et al. 2013]: (a) our
tracked skeleton, (b) tracked skeleton of [Li et al. 2013].

dering a captured sequences with a manually painted Phong-based
material and texture onto a virtual stereo rig with a baseline of ≈4
cm under the environment lighting of St. Peter’s Basilica [Debevec
1998]. Given the images, the initial model, and its BRDF, as well
as the incident lighting, we ran our complete pipeline, including the
scene flow estimation, foreground segmentation, motion tracking,
and surface refinement. We then compared the results against the
ground truth to quantify the accuracy of the skeletal motion and
surface reconstruction (see Fig. 7). The evaluation shows that our
algorithm is able to create a very accurate reconstruction of the syn-
thetic scene, with an average joint position error of only 11.6±5.09
mm, and average surface position and normal error of 6.92± 4.23
mm and 9.34± 7.7 degrees respectively.

To make sure that all parts of our pipeline are actually important,
we also evaluated the approach on a real sequence of 500 frames
by leaving out one or several stages of our pose estimation pipeline.
Possible algorithmic components for the pose estimation pipeline
are: (a) image segmentation, (b) scene flow constraints, (c) depth
map constraints, (d) shading constraints, and (e) silhouette con-
straints. Using only (c), (c+d), or (a+b), the pose estimation fails
to track the sequence completely. Using (a+c), or (a+c+d), the pose
estimation is able to track the whole sequence, however some body
parts get lost during tracking. Our pipeline, consisting of (a+c+d+e)
is able to track the whole sequence correctly and performs best of
all the combinations (see also the supplementary video).

Comparison with State-of-the-art We compared our tracking
approach with the method described in [Li et al. 2013] for the real-
world sequence shown in the bottom row of Fig. 6. As can be clear-

Figure 9: Comparison of our method with [Valgaerts et al. 2012]:
(a) first frame, (b) corresponding geometry, (c) 100th frame, (d) our
reconstructed geometry, (e) reconstructed geometry of [Valgaerts
et al. 2012].

ly seen in Fig. 8, the tracking method of Li et al. [2013], which
employs the silhouette and feature constraints, fails on this binocu-
lar data, while our method successfully estimates the correct pose.

We also compared our method with a purely surface-based track-
ing method recently proposed for binocular facial performance cap-
ture [Valgaerts et al. 2012]. Fig. 9 shows the results of tracking the
template mesh over≈200 frames for the real-world sequence in the
bottom row of Fig. 6. The method of [Valgaerts et al. 2012], which
only propagates mesh vertices by means of scene flow, clearly suf-
fers from self-occlusions, motion estimation errors near boundaries,
and the inability of the applied Laplacian regularization to deal with
rotating motion. Our method, on the other hand, builds on a model-
based skeleton tracking that is much more robust to the articulated
motion that is typical for full body tracking.

Run Time We ran our algorithm on a commodity PC with a dual-
core 3GHz processor and 8GB RAM with a single threaded, non-
optimized implementation. Scene flow calculation takes ≈ 3 min
per frame. Motion tracking including foreground segmentation
takes ≈2 min per frame. The final shape refinement step takes ≈1
min for a template mesh resolution of ≈ 80000 vertices. As these
three steps are independent of each other, they can be pipelined into
multiple threads or machines.

Discussion Our method succeeds to handle many challenging
cases, including moving cameras, specular apparel, and partial oc-
clusions. However, there are limitations to its use. As we use only



Figure 10: A failure case of our tracking method: (a) input frame in
which an actor is turning away from the camera, (b) corresponding
tracked skeleton, (c) corresponding tracked mesh, (d) input frame
in which the same actor is turning back towards the camera, (e)
corresponding tracked skeleton, (f) corresponding tracked mesh.

a small-baseline stereo rig, some body parts may be completely oc-
cluded in some frames. Our current local optimization scheme may
fail to recover from these occlusions when the body parts appear
again. Fig. 10 shows such a failure case for our method on a se-
quence with self-occlusions. Fig. 10 (a), (b) and (c) show one of
the input images, the corresponding tracked skeleton from the cam-
era view point, and the tracked mesh geometry for a frame in which
an actor is turning away from the camera, thus occluding his right
side (see also the supplementary video). The tracked mesh makes
it clear that the occluded arm is not tracked correctly and intersects
the torso. Fig. 10 (d), (e) and (f) show results from the same camera
view point at a later point in time where the right leg starts to reap-
pear again. Both the tracked skeleton and mesh show an incorrect
pose for the leg that was occluded in the previous frames. For the
same reason, multiple interacting actors currently cannot be han-
dled by our method. Occlusions could be handled by first detecting
them and then using a global optimization for the occluded parts
to make sure they are recovered correctly. The fact that occluded
body parts do not have a correct pose during occlusion is not a ma-
jor concern since our primary interest lies in the geometry visible
from the perspective of the stereo camera. Nevertheless, recovering
a reliable pose for occluded parts is an important open problem and
may be relevant for some applications.

Extending the current method to outdoor performance capture is an-
other interesting direction for future work. While our shape refine-
ment algorithm is able to generate detailed geometry for most sur-
faces, it may fail for saturated and over-exposed highlights where
no information can be extracted. Topological changes can not be
handled either as we assume a constant connectivity and topology.
Even though the output of our algorithm is spatio-temporally co-
herent (i.e., it has a constant connectivity and mesh topology), the
shape refinement currently does not account for minor motion of
garments such as a shifting shirt, which may lead to slight swim-
ming artifacts in the range of 1-2 cm when rendering virtual textures
in the original video. This could be improved by performing an ad-
ditional scene flow-based alignment between the virtual actor and
the current input images and performing an additional adaptation of
the actor to the foreground segmentation to capture cloth motion.

8 Conclusion

We have presented a novel performance capture algorithm that re-
constructs detailed human skeletal motion and space-time coherent
surface geometry from a potentially moving, low-baseline stereo
camera rig. It is able to track skeletal motion and detailed surface
geometry of one or more actors in uncontrolled environments by
exploiting BRDF information, scene illumination, and background

segmentation. With our approach we are able to produce high qual-
ity results from a simple stereo camera setup that approach the qual-
ity of results previously only achievable with complex setups con-
taining 10 or more cameras. We believe that our method steps to-
wards enabling the use of full-body performance capture for wider
use, such as on-set performance capture without additional hard-
ware, video editing, and the creation of virtual actors.
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